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Abstract 

This report is intended to present the total  picturc of the 

work which h;is been done by l)r. Farber's g m g  at the University of 

Florida in arriving at credible explosive yield values for liquid 

mket propellants. 

The results are based upon logical methods which have hem well 

worked out theoretically and verified through experimental :~roccdures. 

Three independent methods to  predict explosive yield values for 

liquid rocket propellants will be described. All three give the sane 

end result even though they utilize different parameters and procedures. 

They are: 

1. The Mathematical Model 

11. The Seven Chart Approach 

111. The Critical Mass Method 

A brief description of the methods, how they were derived, how 

they were applied, and the results which they produced will be given in 

the text. 

The experimental work used to support and verify the shove methods 

both in the laboratory and in the field with actually explosive mixtures 

will be presented. 

In the last two parts of this report the metliods developed will 

be used and their value demonstrated in analyzing real problems, among 

them the Ikstruct System of the Saturn V, and the carly configurations 

c!f the Space Shuttle. 
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The depth t o  &ich the material u i l l  be presented here depends 

ohether and t o  what extent stme of the material has been presented 

in previw publications. 

There exist about two dozen xqorts and papeIs uhich 0llCI-e presented 

by Dr. Earber's group and publications in the Annals of the New Yark 

Acadaay of Sciences, variaus Space Congress Pmcedmg - sfroraboththe 

East and the N e s t  Coast, Transactions of the International &yogenic 

Engineering Society, Proceedings of the Department of Defense Explosives 

Safety Board Annual Meetings, The International Fire Institute B i - h m a l  

Reports, etc. 

In addition, saie of the material has been presented both fawally 

and irdormally t o  NASA groups a t  NASA Headqmrters in Uashbgtan, D.C., 

t o  NASA groups at Kennedy Space Center, to NASA ,pups at the Marshall 

Space Flight Center, t o  groups a t  the Air Force Rocket FYqnilsion 

Laboratory, at  Wwards Air Force Base, t o  members of the Aerospace 

Corporationq to  the Ballistics Reseaxh Laboratory at  Aberdeen Proving 

ckotmds, and others. 

It is believed that this report presents the onZy rational approach 

in existence today to  predict explosive yield values of liquid rocket 

propellants and other characteristics. 

This work, carried art over a period of nine years, is presented 

consistent with the numerous papers and reports produced during this 

period. It is believed that this produced the clearest presentation 

even though it created sane cosmetic, notation and numeration problans. 

Quality photocopies can be obtained from the master report residing 

w i t h  NASA. 
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Part I 

kthods of Analysis for the Prediction of Explosive Yields from Liquid 

bcke t Fhw ellant Exolos ions 

With the large scale use of liquid propellants in the space pro- 

grams of t h i s  country for the Saturn Rockets, slcylab, projected 

Space Stations, and the Space Shuttle it became imperative to have know- 

ledge of the characteristics of these liquid rocket propellants. 

The yield from liquid propellant explosions as a result of missile 

failures is of extreme 'importance in assessing the hazards to astronauts, 

lad-support .personnel, launch-support facilities and sux~ounding com- 

munities. Since explosive tests of large liquid propellant rockets are 

not practical because of the costs and hazards involved, prediction 

methods must be used in estimating the expected explosive yields. 

For this reason three independent methods have been developed by 

Dr. Farber and his group at the University of Florida, and all three 

give essentially the same predictions even though they use different and 

irrdependent parameters to do this. 

The methods are briefly described below with the detail left to 

other publications dealing specifically with each one of the methods. 

Only the results from these methods pertinent here will be mentioned. 

Many oAer results have been obtained describing the behavior of the 

liquid rocket propellants 

A. The Mithematical Model 

A mathematical mode11s4*24s42 was developed by Dr. Farber about 
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the year 1964,. with very limited infonation available, to describe 

some of the characteristics of liquid rocket propellants. Because of 

the limited data and information at hand at that time, it was difficult 

to evaluate the validity of this model. But since the model was designed 

to be quite flexible, it was assumed that new infonnation could easily 

be incorporated into the model. 

Considerable information has become available since the development 

of the model, and it has only supported the original work. Data 9 -  

obtained by the principal investigator and this group of the Uni~ ' y  

of Florida by instrumenting two 2S,OOO lh Lox/RP explosive experimentsJ, 

and one 200 lb. Lox/RP cold flow and explosive experiment75s1o4 carried 

aut at the Air Force Rocket Propulsion Laboratory at Edwards Air Force 

Base, California, which established the Yield hurction - Spill Function 
relationship. The data reported by Project F'YRO as soon as it became 

available was also used to check the results predicted by the model. 

This information, including the inert mixing experiments carried out 

in our laboratories, increased the confidence in this model and estab- 

lishe? it as a very useful tool to  describe the liquid rocket propellant 

behavior. 

The basic idea for the model is that in the case of an explosion of 

liquid rocket propellants only the portions whi& are actually mixed 

(fuel and oxidizer) can take part in the qlosion. Furthemre, since 

this must be the case, a definite functional relationship muSt exist be- 

tween the mixing of the fuel and oxidizer, the Mixing Function, and the 

expected explosive yield, the Yield Function. 
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To make it easier for the reader, ti brief description of the model 

will follow so thc references wil.1. only be needed i f  greater detail and 

insight is needed. 

Yield Function 

The Yipld Function, as used in this work, is defined as the fraction 

- 

of the theoretical maximum yield which is actually obtained from: 

Y 

y The0r.k. Y =  

This yield can be expressed as ’I” equivalent yield on an energy, 

or other basis,but care must be exercised in predicting damage, since the 

pressure-time trace for liquid propellants is considerably different 

from that of ‘MT, expecially in the near field. 

Mixing Function 

The Mixing Functic. as used in  this  report, is defined as the 

fraction of the total volume of propellants mixed a t  any time T , 
multiplied by some modifying factors. 

vM 5 F T F ~ F ~  

x = Mixing Function 

VM - Propellant Volume Mixed 

Vp = Total Propellant Volume 
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FT = TMniknce Factor 

FB = Boiling Factor 

FF = Freezing Factor 

Inert laboratory experiments utilizing such fluids as water and oil, 

hot wax and water, hot oil an0 water, INz and water, LNz and kerosene, 

etc. establ&ed the factors FT, FBI and FF. 

It was shown that in the early stages of mjxing these factors have 

a value near one, and thus the Mixing Function is essentially the normal- 

ized nixing volume. This latter fact was also established by the 25,000 

LOdRP and the 200 lb. LOdW explosive experiments. 

Yield Function - Mixing Function Relationship 
In the development of the mathematical model it was assumed that the 

relationship between y and x can be expressed as 

b d  
y = b , c x  (3) 

where b, c, and d are constants. This expression containing three con- 

stants is very flexible. 

Again the explosive experimmts of 25,000 lb. Loz/RP and the 200 lb. 

L02/W cold flow and explosive experiments proved the above relationship 

Val id. 

The Mathematical W e 1  

With the relationship betwee., *he ', . .. on (y) and the Mixing 
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Rmctior. (x) established, the mathematical model can be fontulated, 

resulting in  a statistical function which is capable of incorporating 

the above y-x relationship, and is able to pnwide for the valid esti- 

mating pmcedures of the parameters involved. 

"he statistical function is a modified Dirichlet bivariate surface 

w i t h  four parameters a, b, c, and d. I t  is 

where r is the Gama &tion. The only restrictians on this function 

are that: 

y > 0, x > 0, y i $ ,  d # 0 

To fully define the above function, it is necessary to evaluate 

the parameters a, b, c, and d on the basis of the particular y-x rela- 

tionship describing the physical phermena. This can be done by following 

s ta t is t ical  estimating procedure. 

Defining 
d u. 1 = 1 - xi 

Y i  
vi * T 

'i 

(5) 

four simultaneous equations can be written for the four parameters 

a, b, c, and d. 
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In- r e ) -  P ( b + c )  (W 
In F = In (b) - In (b + c) (db) 

E= I (a) - P (a + b +c) (W 
I n G =  In (a) - In (a + b + c) (fa 

where a bar over an expression indicates the average value of all 

available values 

In indicates the natural logarithm (base e) 

I isEuler~sDigammaFunction 

From the mathematical model, the modified Dirichlet bivariate sur- 

face, a 

A. 

wealth of infomation can be extracted. Same of these are: 

Probability Distribution of the Yield, P 
Y 

From th i s  probability distribution, the average yield value can be 

found as well as the confidence limits, indicating that a certain per- 

centage of all yield values lies below the selected 4eld value. 

B. Probability Distribution for the Mixing Function, Px 

This distribution can by analyzed the same way as in part (A) above. 
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C. Confidence Regions for Yield and Mixing 

The regions into which a certain percentage of all Yield and 

Mixing values fall can be obtained by findjng the nomalized fractional 

volunes d e r  the probability surface. This requires double integration 

of the haction representing the mathematical model, necessitating the 

use of a large-scale computer. Ihe integrals for the total volume (and 

for the sub-voltmes with the proper limits) are of the fonu 

0 0  

Such a plot of y versus x for different volumes gives regions resembling 

contour lines on a map. 

Explosive Yield Estimation 

To use the mathematical model for the estimation and the prediction 

of expected yield values it is necessary to evaluate the parameters 

a, b, c, and d. 

This was done and it was found that by taking the best available 

information the parameters take on the following values: 

b = 4.0 

c = 1.1 

d = 1.5 

a - a free parameter. It can be made a function of 

the propellant quantity, thus becoming a scaling 

parameter. 



8 

The function for a is a distorted S curve as seen in the refer- 

e n c e ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,  which also show how this function is obtained f m  

the best available information. 

The only experiments, except the ones in the laboratory, which were 

rully instmented to obtain the Yield-Spill Relationship were the two 

25,000 lh. L02W eqlosicn tests and che 200 lb. Lo2/RP cold flow and 

explosion experiment. The Yield-Mixing relationship which was verified 

ir; these experiments was assumed to hold true in the remainder of the 

experiments and failures. 

The effect of parameter a on the yield is rather small in h e  range 

of today's liquid propellant rockets, and thus the predictions can be 

considered very good since lzrge variations in the parameter produce 

only small changes in the predicted explosive yields. 

Figure 1 presents the results from the mathematical model. Tt.\s main 

curve presents the average explosive yield values as a function of the 

propellant weight involved. Also shown is the 95 percent confidence 

limit. For the Saturn V, the prediction is that in the case of a catas- 

trophic failure the average yield would be 3.5 percent and that in 95 

times out of 100 such cases it would be less than 9 percent. 

The mathematical model, as used here, included all types of pro- 

pellants as well as all d e s  of failures. 

It is clear that the mode of failure, as well as the propellant type, 

has a distinct influence upon the actual yield obtained 2,3,15. If only 

a particular type of failure or a particular combination of propellants 

is to be investigated, then only that information should be used for 
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analysis in the mathematical model, and the values of the parameters 

a, b, c, and d w i l l  change. The average explosive yield value should 

be more accurately determined in  such cases and the confidence limits 

w i l l  be found, in general, closer to the average values. 

Thus for large-scale liquid propellant rockets it may be desirable 

to  control the mode of failure w i t h  a properly designed destruct system 

to  give a minimum explosive yield. With such a procedure, the explosive 

yield value can be lmered and the explosion yield prediction accuracy 

increased. 

B. The Seven Chart Approach 

An approach predicting the most probable yield, the most probable 

mixing, probability distributions, confidence regions, confidence limits, 

and so h t h ,  by means of a mathematical model was presented in section A. 

The method described there accoinplished the ultimate goal of leading 

t o  a valid prediction procedure of yield, mixing, etc., of liquid pro- 

pellant explosions; it did nct provide an insight into the Fhysical 

phenomenon occuring . 
The approach in  this section suggests a more fundamental method to  

this problem by considering the physical phenomena i n  detail.  Thjs 

approach, can, through understanding of the physical processes and 

phenomena, provide the information necessary to  control these processes. 

The method presented here and earlier15*47,75 is referred t o  by the 

authors as the "Seven Chart Approach" since the procedure can be sum- 

marized in  seven charts, constituting a complete, well-planned program, 



11 

outlining the necessary steps to be followed. 

firthennore, the "Seven Chart Approachft uses presently available 

information regarding these poorly understood phenanena producing the 

liquid propellant explosion yield. 

tical and experimental work is needed, and what information it should 

provide. In this manner the ideal balance is obtained between theory 

guiding the experimental work and the results from the experiments 

modifying the theary. For these reasons this procedure is able to reach 

the desired goals along a more direct route in the shortest pxsible 

time and at minimum cost. 

It points out where more theore- 

Previous theoretical and experimental investigations suggest that 

the actual phenomena producing the yield in liquid propellant explo- 

sions can be divided into pups which lend themselves to separate 

study. These may be both theoretical and small-scale experimental in- 

vestigations. 

In this methcd the problem is divided into three groups of phe- 

nomena which can he studied separately but whm combined allow the 

desired prediction. The three groups are: 

I. The Yield Potential Function 

11. The Mixing Function 

111. Delay and Detonation Times 

These allow the incorporation of the basic characteristics of the 

particular propellants imrolved, of the missile design configuration, 

and of the mode of failure. 

The Yield Potential Function (I) is basically controlled by 
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chemical kinetics, the Mixing Function (11) by the principles of 

hydrodynamics modified by heat transfer, and the Delay and Detonation 

Times (111) by characteristic functions for some propellants such as 

hypergolics or by randm processes for others. 

m e  separate studies can be combined by taking the Yield Potential, 

when expressed as a time function, and multiplying it by the Mixing 

Function to obtain the expected yield at any time after the start of 

the failure or after the m i x i n g  has begun. 

be different for different modes of failure and missile configura- 

This Mixing Function will 

15,75 tions 

The actual expected yield can be determined by sqerimposing the 

Delay and Detonation Times upon the above obtained expected Yield 

Function, either as a fixed value where applicable or as a statistical1.y 

most probable value with proper confidence limits. These Delay and 

Detonation Times are characteristics of the propellants sua as hyper- 

golics or cryogenics, modified by the propellant quantities, missile 

configurations, modes of failures, and so forth. 

The total procedure can be sumarized, with the seven 

charts 15947*75*104 supglying the necessary ilfiomtion, as the rela- 

tionship 

where y expected yield 

Yield Potential at time ’I* 
X Mixir, Function at time ‘I* 
T* Most probable detonation thc 

yP 
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For the development of the seven chart method, conditions were 

assumed so that quantitative results could be calculated for cases 

which were investigated experimentally and for which results are 

reported in the literature. This gives more meaning to the procedure 

suggested and allows comparison of results obtained by the "Seven 

Chart Approach'' with actual test results. The approach would be the 

same if other initial conditions, propellants or configurations were 

used. 

The Yield Potential Function 

The Yield Potential Function for any combination of propellants 

as a function of time can be obtained from theoretical considerations 

in four steps as follows: 

Maxiaarm Themetical Energy Release (Chart 1) 

The maximum amount of energy which can be released from any par- 

ticular liquid propellant fuel-oxidizer mixture can be calculated em- 

ploying the basic laws of chemical kinetics. 
Figures 2A and 2B (in greater detail) show the results from such 

calculations for a three-component propellant mixture of IQ2/IH,/RP-1. 
6. 

The upper curve in these figures is the result of this three - 
In canponent mixture with the ratio of IH2 to RP-1 held constant. 

arriving at the rnrmerical values, it was ssstrmed that all Ut2 always 

reacts, and as much of the RP-1 as can be supplied with WZ. Atmos- 

pheric oxygen could also be included if desired without any particular 

di f f i d  ty . 
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Figure 2A 
(Chart I) 

... On cu .. .r. 1% .. L. *I 

.tt- I O  

j, Figure 2B 
(Chart I Detail) -1 

3 
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The 

LOpP-1 

m e  is 

lower curve is the result of a two component mixture 

again here without atmospheric oxygen contribution. This 

applicable to a twt, component mixture or could be considered 

the condition after all the 1112 of the three-component mixture has 

evaporated. 

Thus any three-cmpment Lo2/Il12/RP-1 mixture will have its 

starting point on the upper curve and will, due to evaporation of both 

and the LO2, follow a path fmn the upper to the lower curve toward 

the origin; this is if the reaction does not occur somewbre along 

this path terminating this process. The actual path depends upon the 

changes in the relative quantities of each component present. 'I'wo 

such paths are shown in Figure 2A and in more detail in Figure 2B 

How they are calculated will be explained later, but it might be 

mentioned at this time that they are for a mixture which was actually 
6,13,22,75,103,119 used in field experiments 

One path assumes that the system is thennally isolated frm the 

surroundings and the other path assumes that maximum thermal inter- 

action between the system and the surroundings occurs. 

The tm paths are not as different as might be expected, indicating 

that the effect of the surroundings is minor. 

Yield Potential as a Function of Oxidizer to €bel Ratio 
fchart 21 

The explosive yield of the liquid propellants will depend not only 

on the quantity of energy released, bt also upon the rate at which 

this energy is released. Because of lack of information 8s to the 

variation in the reaction rates as a function of the propellant 
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camposition, it was assumed for these calculations that the reaction 

rate remains essentially constant throughout the L02/fuel ratios 

under considerat ion here. 

With this assunption which can, however, be replaced by reaction 

rate irZormation as soon as it becomes available, and the information 

of Figure 2, the yield potential can be calculated and normalized in  

terns of the theoretical maximum. 

Figure 3. 

The results are presented i n  

Mass-Fraction Time Relationship for IH2 and LO2 (Chart 3) 

To be able to determine the actual paths as previously discussed 

and shown in Fihures 2A, 2B, and 3, it is necessary to know the time 

variation of the I€12/LOz ratio. "his is easiest to obtain from cal- 

culations of the quantities of H2 and Lo2 present a t  any the .  

The calculations are more or less standard, involving the prin- 

ciples of themadynamics and heat transfer, but a,-e very long and te- 

dious. They involve sinailtaneous heat balance and heat transfer rela- 

tionships with t!e proper heat transfer coefficients which allow, 

through step-by-step iterated calculations, the estimation of the 

quantities of cryogenics vaporized, escaping, or  again condensed in the 

mixture, the quantities of fuel and oxidizer frozen and portions re- 

melted, and so forth. Some simplifying assumptions were made, wherever 

it appeared advantageous,in reducing the large amount of computations 

without appreciably affecting the results. Where quantities were 

encountered which had the same order of magnitude, but opposite sign 

and were relatively small, they were sometimes cancelled against each 

other. 



17 

O c y b  m 



18 

These actions helped tremendously in redwing the scope of the 

necessary computations. 

Contact area variations based upon mixing studies both at the 

University of Florida in connection with the study of explosive hazards 

of liquid propellants, and information found in the literatme were 

used in the heat transfer equations together with the best available 

heat transfer coefficients to obtain the mass-fraction for IH2 and 

m2- 
The information needed and used, aside from that supplied by 

supporting studies at the University of Florida, are referred to in 

Table I; but only the results from the actual calculations can be pre- 

sented in Figures 4A and 4B. 

Yield Potential - Time Relationship (Chart 4) 

In the method for the calculation of the yield potential - mi- 
dizer to fuel ratio relationship, time T was the co~lpnon variable 

used; therefore it is possible to put a time scale on the paths as 

shown in Figure 2B. 

With these time scales on the pat!! of Figure 2B, these curves 

can be re-plotted, giv- the yield potential versus 'time relationship 

as seen in Figure 5. 

These curves represent the theoretical maximum yield which 

could he obtained at any time T from the above propellants due to 

the quantities of the constituents which are present at that time. 

One m e  again represents the yield potential for the isolated system 

the o t h q  maximum theoretical thermal coupling with its surroundings. 
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Table I 

SUBJECT 

- L i s t  o f  L i terature References Used i n  Support of  the Calculations --.-I 

- f o r  the Results - Presented i n  Fiqures II-1A through II-3B -- 

Average Chemical Formulas f o r  Kerosene, RP-1 

Average Neat of Combustion f o r  Kerosene 

Heat o f  Combustion f o r  Hydrogen 

Propellant Proportioil used i n  Heat Transfer 
Cal cul a ti ons 

LAN/RP-1 Contact Area versus Tine Data f o r  
LO2/RP-1 Analogy 

F i l m  Coeff icients f o r  LAN/RP-1 Interface 

F i l m  Coeff icients for LN /LH Interface and 
LN /LH2 Contact Area verb h e  Data f o r  
LO$/LH2 Analogy 

Latent Heat o f  Evaporation f o r  H2 and Specif ic 
Heat f o r  GG2 

Specific Heat f o r  L JP-1 t o  simulate RP-1 

Latent Heat o f  Evaporation f o r  02 

Latent Heat o f  Fusion f o r  O2 

Approximation o f  Latent Heat o f  Fusion f o r  RP-1 

Approximation o f  Specif ic Heat o f  Sol id Kerosene 

REFERENCES 

37, 43, 44, 46 

37, 38, 45 

38 

6 

22 

22 

22 

39 

28 

39, 28 

39 

46 

40, 41, 42 
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Since the curves of Figure 5 give the yield for propellants when 

perfectly mixed to produce maximum yield, these results must be modified 

by the Mixing Fbnction (The ratio of the m i x e d  amounts to the total 

amount present at any time T ). 

The Mixing Function (Chart 5) 

While the yield potential function as calculated above for a 

specific case established the actual quantities of the various consti- 

tuents present and the maximum theoretical yield, if all these consti- 

tuents are mixed most effectively, it does not give any infonnation as 

to the degree of mixing of the constituents. 

For example, at time T = 0 when the constituents just begin to 

mix, none of thean are actually mixed and therefore an explosion could 

not be produced. Thus the Mixing Function is zero while the yield 

potential iunction is near its maximum. The product of the yield po- 

tential and the Mixing Rmction at this time gives the true or expected 

yield. 

The Mixing Jhnction is essentially a hydrodynamic function, however, 

complicated by high rates of heat transfer. This d e s  the analytical 

approach difficult, and at least to start with, an experimental ap- 

proach for determining this function is more promising. This is true 

especially since questionable assumptions are not imrolved. 

Four methods have been developed in connection with the over-all 
systematic approach presented in th is  section. These four methods 

allow the detailed study of the mixing process and phenomena producing 

the Mixing Function of liquid propellants and have been used w i t h  
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great success. 

the same experiment, these methods have independently produced results 

which are in excellent agreement. 

In preliminary studies often applying two methods to 

The detailed description of these methods and the various methods 
15,75 of analysis and the results obtained by them are presented elsewhere 

Since they implement the approach suggested in this part of the report, 

they are briefly mentioned here and will be discussed in greater detail 

later. They are: 

1. Film h l ~ s i s ~ ~ :  A high speed photographic technique, giving 

by use of mirrors a three-dimensional picture of the mixing process on 

the same film frame. Special analysis of these frames as to mixing 

profile, mixing volume, and turbulence factcr allow the detennination 

of contact area and degree of mixing. 

2. Wax Cast  Analysis15: By use of hot wax and cold liquids, the 

nlixing process can be '"frozen" at different stages of the mixing by 

varying the hot and cold temperatures. The "frozen" state of the mix- 

ing process can then be studied at leisure at any t m e  later. These 

casts can be analyzed for outside area by projection or coatipg methais; 

they can be serially sectioned to give the total contact area, tur- 

bulence factors (total contact area over profile area), and sc on. 

3. Vibration Mixing Analysis'': This method consists of mounting 

a particular configuration on a vibrating table, simulating the various 

propellant components by partic .les of different color, size, density, 

shape, etc. , and after removing partitions, partially or completely 
shaking the system. The components wil: mix and the degree of m i x i n g  can 

be periodically checked at desired locations. Evaporation and other 

losses can be simulated by removing programed quantities or numbers of 

particles at desired locations and prescribed intervals. 
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4, Thermocouple Grid Analysis15: This method of analysis employs 

a three-dbensiorial grid of fine thermocouples w i t h  each junction being 

monitored con+inuously. The traces give information regarding the mixing 

front, the degree of mixing at a particular point, the degree of tur- 

bulence at a point, the point or points of ignition, the time delay f m  

the start of mixing (or time of failure) to ignition, the propagation 

of the reaction front, the propagation of the shock front, the separa- 

tion of the shock front from the reaction front, and so forth. 

Results from the above methods can be correlated and compared 

easily by simultaneously applying the different methods of analysis t o  

the same experiment. These experiments provide information needed for 

the better understanding of the !nixing phenomena of liquid propellants. 

They provide data as to the statistical reproducibility in seemingly 

identical experiments, the variation due to test configurations, and 

so on. 

The Themcouple Grid Analysis method is the most powerful since 

it directly relates the m i x i n g  phenomena and the yield obtained all in 

one and the same experiment. It is , however , considerably more expen- 
sive than the others. 

the individual junctions is expensive and the reduction of the data ob- 

tailed time-consuming . 

Instrumentation for high-speed monitoring of 

However, this Thermocouple Grid method is capable of taking measure- 

ments in liwid propellant mixtures from the start of failure up to and 

after igniticn. If the grid is extended beyond the original boundaries 

of the propellant configuration, information con be obtained as to 

fireball growth rate, extent, temperature, shock wave strength, shock 

wave velocity, and so on. 

Purther *and more detailed discussion of these four methods of 
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analysis which can provide the Mixing Function-time relationship is 

left tc a later section when they are used for rather detailed studies 

of the Saturn V Destruct system, early configurations of the Space 

Shuttle, etc. 

Only one of the results is presented here to show the complete 

procedure of the Seven Chart Approach corresponding to the spill 

experiments used as examples for cmparison with the calculated numer- 

ical results. 

t h i s  particular case obtained by method 3, the vibration mixing analysis. 

Since this method has no absolute time ccale, a number of runs were 

made adjusting the amplitude and frequency so that easily measurable 

changes were observed in reasonable time intervals (about five seconds). 

Since fruin theoretical considerations the maximum should occur at 

it is the mixing function presented in Figure 6, in 

about seven seconds, t h i s  time was ascribed to the maximum point of 

the mixing curve. In th is  manner the absolute time scale was establi5hed. 

The reproducibility of this curve was still within plus or m h  

4 percent. The reproducibility became better as the mixing violence 

or quantity of mix increased. This fact was observed in all experi- 

ments whether simulated on the vibration table or w i t h  real liqyids 

using the other methods. 

Delay and Detonation Times 

Probably the least understood phenomena of the ones discussed in 

this section are those controlling the delay and detonation times. 

~0th these quantities will be discussed in considerable detail 

in the next section where they are evaluated, and detonation times 

calculated, based upon the new hypotheses proposed and referred to as 
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Wreball Hypothesis" and ''Critical Mass Hypothesis". 

The delay time is defined as the time from the start of failure 

to ignition, or the time from the start of mixing to ignition, which- 

ever is preferable . 
The detonation time is the time from ignition until the reaction 

reaches the boundary of the original propellant conf iLuration. 

For the purpose of th is  presentation, actually measured delay 

times frm the experiment are taken and statistically analyzed so as 

to establish the most probable yield value as well as the 95 percent 

confidence limits. More data is needed to establish these quantities 

with greater. accuracy. 

For the test used for comparison here, the average delay plus 

detonation time was 3.3 seconds and the standard deviation for fixing 

confidence limits , 1.1 seconds. 

Expected Yield Function - The Relationship (Chart 6) 

Having discussed the three groups of phenmena playing a role 

in producing the yield of liquid propellant explosions, the results 

obtained above can now be combined. 

Taking the Yield Potential Function calculated and presented in 

Figure 5 and then the Mixing Function presented in Figure 6, and c m -  

bining them by multiplying corresponding time ordinates, the expected 

Yield Function is obtained. This result is presented in Figure 7 which 

shows the yield which could be expected at any time T if detonation 

did occur at that time. Only the curve for the isolated system is 

presented here but the other is obtained easily in the same manner. 
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Figure 8 

(Chart 7) 

ADL J Test Results 
plotted 
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This expected Yield Function has a plus or minus 4 percent variation 

in yield value due to t h i s  variation in the hlixing Func.tion. 

The expected Yield Function has a characteristic shape starting 

a t  zero, increasing w i t h  a dip or double hump to  a maxirmrm value and 

then decreasi ~g again. The dip or double hump is due to the initial 

proportions of the propellant cmponents. 

The maximum is considerably below 100 percent since, w i t h  any 

appreciable quantity 0: liquid propellants, perfect mixing is almost 

impossible to achieve and furthermore, due to  the time elapsed Letween 

the s tar t  of mixing, and best mixing, the y'eld potential fa l l s  below one, 

because of evaporation losses of the propellant components. 

Expected Yield (Chart 7) 

The last  step in this series, to obtain the expected yield f G r  

liquid propellant explosions, is to superimpose the information de- 

veloped above t o  obtain the combined results. 

Figure 8 shows the results, the final step in t h i s  systematic ap- 

proach, with the expec ,d Yield Function of Figure 7 modified by the 

delay and detonation times fixing an interval within which, statis-  

tically, 95 percent of a l l  expected yield values must lie. 

The highest value for the expected yield fraction predicted for 

this test series, using 95 percent confidence limits, should be about 

0.43, the lowest 0.13. A l l  values predicted by this approach should 

f a l l  between 0 and 0.50. 

Another theoretical method for predicting the ignition time is 

presented in the next section and agreement between the theoretical 

and experimental results is excellent. 
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The seven steps of this procedure divide the complica';.d problem 

into three very distinct parts, which when combined give the following 

desired results: 

1. h imum Theoretical Energy Release 

2, Yield Potential as a Functiorl of Oxidizer to €bel %ti0 

3. Mms-Fraction - Time Relationships 

4. Yield Potential - Time Relationships 

5. The Mixing Function 

6. Expected Yield Function - Time Relationship 

7. Expected Yield 

The three distinct parts are the determination of the yield po- 

tential, the mixing process analysis, and the ignition and detonation 

phenomena. 

The procedure t o  determine the expected yield for a particular 

problem is the most detailed of the ones presented here. I t  gives 

specific answers but considerable effort is required for this analysis. 

I t  will be used extensively in the las t  two sections of this report 

for the &turn V Destruct System Analysis and the analysis oz' some of 

the earlier Space Shuttle Configurations. 

C. Critical Mass Method 

Introduction 

When large quantities of liquid fuels and oxidizers are brought 

together during experimeiits, or accidentally, the results are liquid 

propellant explosions. 
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Many different phaomena can triggcx the explosion, such as 

flames, sparks produced by striking or breaking metal structures, hot 

materials or hot spots produced by slow chemical reactions of fuel and 

oxidizer, the breaking of crystals which are fonned when one of the 

liquid components freezes the ot3.m and which are broken mechanicallv 

or by t h e d  stresses, or by static electricity which is a result of 

internal friction and which may produce a spark discharge. 

Many more possibilities could be cited but these additional sources 

do not change the Lasic picture. 

From the above it can be seen that as soon as there is contact or 

mixing of the fuel and oxidizer, ignition is possible i f  an ignition 

source is available. If not, the mixing process may proceed with more 

and more of the fuel and oxidizer mixing until an ignition source 

appears, either through external or internal action. 

This section disasses  the inherent production of an ignition 

source due to the mixing of oxidizer and fuel, specificaly for cryogenic 

rocket propellants. 

I t  has been well d~clrmenteed*~ over many years that wher 'iuid layers 

move across each other that electric double layers are produced resulting 

in electrostatic charges and in very high voltage differences, i f  thc 

liquids are good dilectrics so that the charges cannot leak off rapidly. 

If a gas bubble or other medium of lower dielectric constant is 

interposed between the highly charged liquid layers, e l e c t r i  break- 

down can occur (a spark jumps) which may well act as the source of 

ignition. 
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Since this electrostatic build-up is always prescnt within the 

mixing regions of fuel and oxidizer of dielectric liquid rocket pro- 

pellants, electric discharge & inevitable whcn the voltage difference 

has reached the necessary value for the b- to occur across one 

of the bubbles produced b>l the boiling of the constituent with the 

higher boi1i-g point. 

This study is rather general but was applied here to mixtures of 

LozlRpl and Loa/%, propellant combinations of main interest at this 

time. 

It w i l l  be shown that vel-e build-up increases with the quan- 

t i t i e s  or masses or ppellants imrolved and W the ignition proba- 

bility reaches a value of one (or becanes a certam ty) the quantities 

which have actually beenmixed will be referred to ais ma-. 

- 
Fluid Plug h i e l  

Mtch work was done with bulkhead type failures shce they are 

1Shly ones and one of the m r e  gentle methods of bringing the com- 

ponents together, This type was selected in connection with this wrk 

sinre large amounts of experimental data are.available involving cryo- 

genics for either fuel, oxidizer, or both, The bulkhead failure mode 

was then used to fornarlate the Fluid PI:: hbdel. 

When one cmponent of a fuel-oxidizer canbination f&.;s into the 

secohd, this can be l i k e d  to a plug of fluid fall- into the other, 

rigme 9. 

whsn the fluid plug of ale cxxlpcmmt enters the othor ctmpomlt 
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heat transfer at the contact surface area, which can be calculated, 

results in large amounts of vapor being generated. The amount of 

heat transfer constantly changes since the contact area changes, and 

the resulting amount of vapor generated as a result varies constantly 

Illaking the fluid plug bob up and down. 

The variable amount of vapor generated with time and the varying 

fraction of th is  vapor \.hi* is entrained at  any one time in the fluid 

plug, provides the mass of the plug and the farce acting on it. The 

resulting motion is an oscillation w i t h  varying and generally decreasing 

amplitude due to the constantly varying driving force and the constantly 

varying mass of the fluid plug. 

The fluid plug motion can be expressed mathematically as 

where 

and CF is the force acting on the fluid plug, m is the constantly 

varying mass of the fluid plug, y is the displacement from the 

instantaneous equilibriun position, and T the time. 

The density of the liquid in the plug is pL , the volume of the 
liquid in the fluid plug is VW , the density of the vapor in the 
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fluid plug is p , and the volume of the vapor i n  the fluid plug is 
8 

, w i t h  g being the gravitational constant. V is the total  
vGP g 
volume of vapor generated and f is the fraction of it which is 

entrained in  the fluid plug a t  time T . 
The volume V of the fluid plug can be expressed, if  a cylin- 

drical configuration is taken, in tenns of the fluid plug radius r , 
and fluid plug height H . 

p .  

P 

Vp = mZ H P (131 

Coriiidering the heat transfer a t  the surface of the fluid plug 

q = h K A T  AT 

w i t h  q the heat transfer, h the heat transfer film coefficient, 

A the average area of heat transfer during the interval AT, AT the 

temperature difference, and h the latent heat of vaporization. 
fg 

Froan equation (14), the amount of vapor generated can be calculated. 

v&? = 

Using the above equations 

for the fluid plug can be 

CF = -$ mp2 y 

and relationships, the equation of motion 

written 
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JO 

In the above equationspB is the density of the liquid sur- 

rounding the fluid plug, a. the instantaneous equilibrium position 

or center of oscillations during dSY and 4 is a function which has 

to satisfy the motion as dictated by the heat transfer and the re- 

sulting vapor generation. 

The above equation is very complex and for this reason simplifi- 

cations are made by assuming that H is constant for all the cyclic 

increments, and that Cp , the plug density, is made to vary to  cm- 

pensate for this assumption. 
P 

Solutions giving excellent agrement with experimental wrk can 

be made by further simplifying the conservation of momentum equation to 

or 
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which has solutions of the form 

y - c' cos w? + C" sin W? 

w i t h  1 

w =  [&Iz 
c' ard c" being arbitrary constants, and w the instantaneous fre- 

quency of oscillations of the fluid plug. 

The above equations can describe the actual motion of the fluid 

plug successive application to fractions of cycles or successive 

time intervals. This can be indicated by 

dF, z 
dT2 

+ 
w2y2 - 0  

w i t h  the solutions of 

I y2 = c;I cos w2r + ci' sin W ~ T  

C' COS W T + C" Sin W T I 
Yn n n n n 

and the boundary and initial conditions for each cycle increment. 
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The final conditions of one cycle increment form the initial con- 

ditions for the next. 

where the subscript "i" refers to the instantaneous values for the 

cycle increment d e r  analysis. 

From the above the total  displacement (subnergence) Yi of the 

plug is 

Yi = ai + yi 

And the volume mivcd a t  time T~ is 

2 
pi yi vi = lrr 

And the contact area a t  time f i  is 

where FT is a turbulence factor which may be added i f  the contact 

surface is very turbulent or stirred up. 

In using the Fluid Plug Wel ,  the equations can best be solved 

by trial aid error making the nece sary assron;>tions and then varying 
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them until the loop, which has to satisfy the physical phenomena, 

closes. The motion of the fluid plug produced by the density changes 

in the fluid plug nust agree with the heat transfer producing these 

density changes which in turn is a furaction of the fluid plug motion. 

The detailed steps involved in the method are: 

a) The determination of r H, uo from the physical configur- P' 
ation and failure mode. 

b) The selection of AT or fraction of cycle to be analyzed 

c) The calculation of V 
gi 

h L o p  = 7776 Btu/hr-ftL- OF 

= 1140 B?x/hr-ftz- OF hzo2/'Hz 
d) The selection of f (or calculation based upon bubble rise 

velocities). 

e) The cslculation of wi and ai . 
f) The use of the initial and boundary conditions to calculate 

the amplitude of instantaneous oscillation for the AT under 

consideration. 

g) Calculation of the penetration. 

h) The determination of the volume m i x e d  Vlaix during the 

interval under analysis. 

This procedure is then repeated as often as needed or desired to 

obtain the Mixing Punctim Vmir versus T . 
The analysis described above, using the Fluid Plug Model for 

a:rpraximately half cycle increments is presented in Figure 10, 
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Also plotted on this graph is the experimental result of the 

Mixing Function for LN,/RP-l. More discussion on the experimental 

wrk  will be found in a later section. 
&I 

- Electrical Analogy 

As has been discussed in the literature for years, motion of 

fluid layers w i l l ,  through the relative motion and friction, produce 

charged regions and set up potential differences within the fluid i f  

these charges are prevented from leaking off too rapidly. 

Since the motion of the fluid plug is described by the Fluid 

Plug Mc-lel developed, th is  motion should make it possible to  describe 

also the electrostatic charge and voltage generation. Substitution 

in the equations of motion of the equivalent corresponding electrical 

quantities for the mechanical ones w i l l  provide a relationship between 

the charges generated and the motion of the fluid plug, the mixing 

and the heat transfer. 

The frequency of the motion in the basic equations remains the 

same. 

While the physical motion, is however, of oscillatory nature, 

the charge generation and build-up is cumrulative, or in other words, 

independent of the direction of the motion of the fluid layers. 

The expression becanes 
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whw. the same basic assumption is made for simplification purposes 

as before. The general solution is again of the fonn 

Qi = Di cos W . T  1 + E. 1 sin W.T 1 (30) 

Qi is the instantaneous charge generated and Di and Ei are 

arbitrary constants. wi is the one determined fram the physical 

motion of the fluid plug. 

These equations allow the calculation of the charge generated 

during each time interval or cyclic increment, with the constants 

determined from either experiment or physical arad electrical properties 

of the fluids. 

The value of the accumulated charge, which is the quantity which 

eventually provides the ignition source through generation of the 

required potential, is obtained fram 

Q = C IQiI 
1 

(31) 

where Q is the total acnmnilated charge calculated f m  the sum- 

mation of the absolute values of the charges generated for the cyclic 

increments. 

Figure 11 presents two curves of charge generation calculated in 

this manner fram, the fluid plug model. The lower curve is calculated 

for a fluid plug 3 inches in diameter and 5 inches high. 

ponds to the use of 140 in of LN2 in a 50% bulkhead failure arrange- 

m e n t  (d/D = 0. 5 ) ,  where d = diameter of the hole and D = diameter of 

It corres- 
3 

the tank. 

The upper curve represents twice the quantity or a fluid plug 

It is shown that the doubling of the mass produced twice as high. 
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essentially twice the charge. Experiments over two orders of magni- 

tudes demonstrated a linear relationship. 

In all the experiments carried out with both organic (hydrocarbon) 

fuels and LN2 as well as inorganic liquids such as distilled water 

a d  IN2, it did not seem to make any difference whether the mixing to 

produce the electrostatic charges was carried out in steps or the total 

mass was brought together all at once. This is only true if the leak- 

age was negligible since the step by step mixing took mch more time 

to produce the same charges. 

Since the fluid layers act as plates of a capacitor, and the 

electrode screens are imbedded in the fluid layers, the relationship 

betwen electrostatic charge, capacitance C, and voltage V can be used 

Q = W  (32) 

With the Q calculated from the equations of motion and the 

electrical equivalencies, and C f m  the physical configuration, V 

can be obtained from equation (321. 

The voltage build-1-v obtained in this manner is presented in 

Figure 12. 

fonn in which it will be used later for determining the Critical Mass. 

It is presented here as a fmction of mass which is the 

The experimental verification is presented in the next section. 

Critical Mass 

The hypothesis proposed bere, and believed to have been verified, 

is that in the absence of any external ignition sources a mixture of 

fuel and oxidizer will, through the nature of the mixing process, pro- 

duce electrostatic potentials. These will reach vibes at which 
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brealodown t!qh sparking occurs supplying ignition soulres for the 

qlosive mixture. 

As a consequence of the above, it is impossible to m i x  unlimited 

amounts 3f cryogenic rocket propellants since the voltage build-vp 

becanes larger as the quan::ity mixed becomes larger, and finally with 

a certain limiting quantity mixed, ignition becomes a certainty since 

breakdown will occur. This quantity is refend to by the writer as 

CRlTICAL M A S .  

Basically what t h i s  means IS that an explosion can occur at any 

time with any quantity of explosive mixture , bolt the probability of 

it occurring increases and finally becomes a certainty at a particular 

quantity, and it is irupussible to mix quantities larger than this 

limiting value of Critical Mass witkaut an explosion occurring. 

quantity of 'ritical Mass, however, varies with the energy of the mixing 

prscess. This will be discussed later in the report.) 

certain ta occur as soon as the Critical Mass is reached. 

(The 

Ignition is 

Accordhg to the literature, it takes 0.02 millijoules to ignite 

hydrogen, and under unusual conditions it has been ignited by 1300 

volts 85-94. Usually it takes higher potential differences, and vol- 

tages of 14,000 to 20,000 volts are quoted 85-94. 

according to these sources, consider it necessary to have an electric 

field strength of 76,000 volts per inch before spz king can occur. 

some authorities, 

Using the last rnmber, Q Id require about 19,000 volts for 

discharge across a 1/4 inch bubble, the most prevalent size in the 

experiments. 
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Further, using the knowledge that 4 volts arc produced a t  an 

average, for ,.;lch 200 m l  of LU2 and recognizing that the physical- 

electric-1 properties needed here of IN2, IH2, and M2 are similar, 

it can be estimated that for a hlkheai type failure the Critical 

Mss, or mass which when mixed w i l l  produce t h i s  voltage, is about 

2300 lb. for IDz/LH2 and approximately 2800 lb. for L02/RP-1. 

Trusting thiit t he  above results are correct and applicable, one 

can estimate the maxirmnn expected explosive yields for such failures, 

obtaining about 3 percent for the S-IVB PYRO experiment and about 11 

perccnt for the 25,000 lb. L02/RP-1 bulkhad type explosion experi- 

ments. These yield values are i n  excellent agreement with the reported 
119 experimental values . 

Variation of Critical hss  with Mixing Energy 

When W2 and RP-1 or LO2 and IN2 are brought together the dif- 

ference in ranperaturc produces rather rapid h e a t  transfer. This heat 

transfer produces large amclunts of vapor which through its sudden dis- 

placenent of liquid producrs rather violent mixing of the fuel and the 

oxidizer. 

With the  propcllar- canbinations under these conditions, a t  least 

the bDiling w i l l  always be present, and a fraction of this energy w i l l  

produce agitation thus contributing t o  the mixing process. 

More gentle mixing is not possible, and m i x i n g  energies smaller 

can only be produced when the propellant components are b-ht to 

temperatures less different from each othcr. 
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If the mode of failure is changed so that the propellants am 

driven together with greater energies, the mixing w i l l  take place 

faster. The darge  and woltage generation will also occur faster 

but does not relatively increase as much as the mixing rate. 

From these considerations it can be seen that if propellants can 

be mixed very gently, say drop by drop, infinite quantities could be 

mixed, which howver mild  take infinite time, without producing 

ignition. On the other hand, if  the propellants could be brought 

together with infinite energy, they could be canpletely mixed in  zero 

time, again allowing the mixing of infinite quantities before ignition 

can occur. 

This analysis then indicates that the Critical MISS, when plotted 

against the Mixing Energy, which is supplied by both the mode of 

failure and the boiling process, approaches infinity both as the 

mixing energy approaches zero and also as it  approaches infinity. 

Thus, the plot of Critical Mass versus Mixing Energy is a distorted 

"U" curve, and al l  the redl values which can be encountered w i l l  fall 

below this curve. 

From mathematical analysis, the Critical Mass function can be 

divided into two characteristic branches, the one to  the l e f t  of the 

minimum and the one to  the right. The mininnnn point represents the 

value of Critical Mass which is t-he maxinnnn value which could be pro- 

duced 

this value is a s i l y  calculated for any quantity of propellants, a l l  

other cases are normalized with respect to  this energy value. 

; th the boiling energy of the bulkhead type failure. Since 
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From experiments with non-cryogenic mixtures, it is seen that 

the time it takes for the voltages to be reached which could produce 

ignition decreases with an increase in the mixing energy; conversely 

it appioaches infinity when the mixing energy approaches zero. The 

relationship below closely describes this behavior. 

?*E Cf (33) 

where T* is the Critical Time, or time it takes to build up the 

voltage necessary for ignition, and E is the Mixing Energy. Cg 

is an arbitrary constant. 

Fran the Fluid Plug Model the mass mixed at  any one time can be 

expressed as 

M = c4 sin m 

5 5  C4W f 3 3  
CqWT - CqW T ... 31 +TI- e 

cqm 

and therefore 

(34) 

and fmn (33 )  

c1 = -  E 
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This equation is seen to give the largest values for Critical 

Mass at low values of Mixing Energy. Since with cryogenic propellants 

under normal conditicns, the Boiling hergy is the minimum which 

produces the m i x i n g ,  Equation (35) is not the most significant con- 

tribut ion. 

Again from the Fluid Plug Model and laboratory experiments with 

cryogenic fluids, it could be seen that twice the energy supplied for 

the mixing process produced es-cmtially twice the mass mixed for the 

same time interval, three times the energy produced three times the 

mass mixed, etc. 

This can be stated as 

M = cs ET (36) 

Froan the previous work at the University of Florida with 

IN$RP-l and the mixing studies carried aut by PYEED w i t h  

was found that 

it 

(37) 
2 M = c6f 

Setting equations (36) and (37) equal, the relationship between 

and E isobtained. 
2 c5 E = c6f 

f = -  c5 E 
‘6 

Substituting this last obtained relationship into equation (36) 

gives the significant M and E functional relationship for Mixing 

F- qgies larger than the Boiling Energy. 
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cS M = c  E - E  
' 6  

= c2 E2 (39) 

The two relationships developed (35) and (39) can now be can- 

bined for a general equation relating thitical Mass and Mixing Energy. 

For the analysis here, the Critical Mass - Mixing Energy rela- 

tionship was nonnalized with respect to the Boiling Energy. 

Evaluating the constants c1 and c2 fmn the Critical Mass 

detexmination based upon the charge and voltage generation, the 

Critical Mass Function takes on the form: 

and can be plotted, Figure 13. 

Figure 13 presents a plot of Explosion Mass (the amount of mass 

in any particular case which actually takes part in producing the 

explosion) versus the Mixing Ehergy Ratio (Actual Total Energy pro- 

ducing the mixing divided by the boiling energy). h a plot of this 

sort all explosions of liquid propellants can be recorded for which 

enough infonnation is available, such as yield values, and in addition 
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the upper bound of these wlues can be plotted as the Critical Mass 

Curve. 

A l l  actual masses taking part in an explosion of liquid rocket 

propellants must f a l l  below this curve. 

I t  is  seen from Figure 13 that a l l  known I'alues of explosions 

for liquid rocket propellants for which data is available fa l l ,  when 

plotted in this manner, below the Critical Mass Curve and only a few 

values approach the curve. 

Many actual cases have been analyzed, but only a sample of them 

are plotted here. For these cases the boiling energy for a bulkhead 

failure with equal quantity of Fropellants was calmlated for refer- 

ence .ud then the actual boiling, potential, and kinetic energies 

available for the mixing process were considered. 

I t  is believed that this new concept of Critical Mass for liquid 

propellants is very useful, indicating that there are self-limiting 

phmmena in  the mixing and explosion processes of liquid rocket pro- 

pellants and that there exists an upper l i m i t  to the size of explosion 

which can be realized. 

For total quantities of propellants less than the Critical Mass 

explosive yields of 100% are possible, although the absolute size 

of the explosion is smaller than that produced by the Critical Mass. 

Purthennore, maximum explosive yield values for liquid propellant 

explosions depend upon the mode of failure which, in part a t  least, 

provides the energy available t o  bring the propellants together. 

W i t h  large quantities of propellants it is physically impossible 
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to get all the propellants involved in an cxplasion since ignition 

occurs at the latest as soon as the Critical Mass is reached in the 

mixing process, while the reminder of the propellants take part 

only in rapid burning and the formation of the fireball. 

The hypothesis of this self-limiting process and the fxt that 

electrostatic charge and voltage generation provide this physical 

limitation, has been shown in the laboratory. 

verified by check; against the explosive yields of large propellant 

It has further been 

quantities which .ere produced both by tests and missile failures. 

The mathematical Fluid Plug Model preserAted here demonstrates 

how the Critical Mass can be predicted from theoretical analyses for 

a desired d e  of failure. 

The results and predictions based upon the Critical Mass 

Hypothesis agree with actual experiments and actual failures and also 

with results obtained by the kkmatical Model 2nd the Seven Chart 

Approach. 

- D. Fireball Hypo thesis 

-- Inttroduct ion 
Sections A, B, C, above give sane of the characteristics of 

liquid rock& propellant explosions. Section A presents the mathe- 

matical model which is a statistical treatment of the overall char- 

acteristics culminating in prediction of the explosive yield that 

one can expect. 

of how the fuel and oxidizer come together, m i x  €or certain modes of 

Section B, the Seven Chart Approach, gives details 
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failures, and the expected yield for any time following the f a ih re .  

Section C, the Critical Mass Method, sets the upper limit for liquid 

rocket propellant explosions indicating that the mixing process has 

built-in self -limiting characteristics so that very large explosions 

with large liquid propellant quantities are not possible. 

The present section takes the phenomena fm the time of ignition 

through the formation of a detonation front a t  the reaction front, 

which i n  turn produces a shock front. The reaction front and the 

shock front behavior which produces a f i re ta l l  and a following com- 

bustion product cloud i s  discussed. 

After ignition occurs, the reaction of fuel and oxidizer produces 

a reaction front which develops into a detonation front producing a 

shock wave which has a maximum velocity due to confinement of the 

surrounding liquid. The velocity then decreases with the decrease in 

confinement as the fronts come closer to the surface of the container. 

When the shock front, pushed by the reaction front, reaches the edge 

of the mixture and enters into the inert liquid, it moves ahead of 

the reaction front and is reflected back and forth btween the wall 

and the reaction front. Each pressure impulse can actually deflect 

the walls while this occurs. When finally the reaction front and 

shock front are a t  the surface logether, they suddenly break through 

with an increase in velocity due to the transfer of momentum to a 

lighter fluid and merge as a shock front and a reaction front which 

forms the edge of the fireball. The shock front is very rapidly 

attenuated as it moves through the atmosphere. The reaction front 
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zlso is attenuated rather rapidly forming the typical hesitation hump. 

For the purpose of th is  discussion, the problem can be divided 

into 5 parts which together form the "fireball hypothesis". These 

5 parts are: 

The region where ignition produces phenomena that develop 

ir.co the detonation phenomemn. 

The region where the reaction front and the shock front travel 

together through the propellant mixture. 

The inert liquid region where the shock front and the reaction 

front separate and where the shock front is reflected back 

and forth between the walls of the container and the reaction 

front. 

The liquid propellant-air interface, actually a region where 

the liquid boundary begins to move and where the velocity of 

the reaction front forming the fireball and the velocity of 

the shock wave increase sbrp ly  due to the entrance h t o  a 

lower density medium. 

The region in  which the shock wave travels through the a t -  

mosphere and where the fireball grows and develops separately 

far behind the shock wave. 

Figure 14 is a sketch of the hypothesis showing the five regions 

for one case of confinement znd yield, etc. These regions are dis- 

cussed in detail i n  the following pages. 

I t  might be well to  mention that the scales chosen for presenting 

the five regions in  Figure 14 are different for each so as t o  be 
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able to show the variations occurring in each region. Region 4 is 

actually very small; regions 1, 2, and 3 make up the physical space 

of the liquid propellants, the relative size being a function of the 

explosive yield obtained from the propellants. Region 5 is by far 

- Lrgest . 
Also on a time scale, the phenmena in regions 1, 2, 3, and 4 

will happen in a matter of milli-seconds and the flash in micro- 

seconds, while those of region 5 ordinarily stretch over many seconds. 

This last fact is also the reason why measurements are available for 

a good part of region 5, while they are not for regions 1, 2, 3,  and 4.  

The other sections report work covering another phase of the 

problem of liquid propellant explosion hazards, mainly the Mixing 

h t i o n  - an important factor in the prediction of explosive yields, 
and propose a method which is believed to be able to give experimental 

information in regions 1, 2, 3, and 4. 

The Five Regions 

Region I - The Region Where Ignition Produces Phenomena that Develop 

Into the Detonation Phemnenon. 

Sane time after liquid propellants are brought together, either 

intentionally or through failure, ignition may occur. At this time 

of ignition a certain fraction of the total propellants involved ir 

mixed and ready for reaction. Since mixing continues with time, but 

also evaporation losses occur where cryogenics are involved, the 
ignition time has a pronounced effect upon the explosive yield 15,4 7 , 7 5,104 

The the of ignition may be essentially a constant for hypergolics or 

. 
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or a randan function for cryogenic propellmts. 

The reaction between the propellant canponents Gus initiated 

will progress rather quickly among those molecules that are ready 

to react. This may be expressed simply as 

.- . a; = kN (431 

N = number of molecules ready to react 

T = time 

k = reaction factor 

Since the molecules that are ready to  react a t  time,-c , must 

be in "contact" with each other, they can be thought of as located 

on a "contact area" or %urfacett produced by the mixing process. Thus 

the above equation can also be expressed as 

g = w  :441 

A - contact area 

This contact area, or a surface pmportional to  it, can be ma- 

sured experimentally for a particular missile configuration and mode 

of failure as a function of time. For the purposes here and from a 

theoretical point of view, it could be Considered sphaical for a 

f i r s t  approximation, thus assuming the reaction progresses in a l l  

directions, which w i l l  certainly be true in the ini t ia l  stages. 

Thus we can write 
CI L 

2 4.m 

Y 
A =  2 = 4m 
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r = equivalent radius of actually spherical surface 

r = radius of actual total contaet area of which only a 
Y 

fraction y reacts 

y = yield 

Little infomation is available un the reaction factor k in 

equation (44). Let us assume that it i s  a function of time and that 

it can be expressed as 

k = kor (46) 
a 

where ko and 2 xmstants. 

W i t h  this id 

en  be integrated. 

+ion and the above assumptions, Equation (44) 

(A) For a = 0 in equati.m (46), eqwition (44) can be integrated, 

and ut i l i z ing  ?+tion (45) one obtains; 

v =  
y2 

‘2 1 

Where v is the velocity in Region I and r2 the corresponding 
y2 

Plottinp these parametric Equations (Ca) and (47b) as v Y 
versus r,  the part of tk- 1 .reball Hypothesis falling into Region I 
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is obtained (Figure I=). 

(B) Repeating the operation of part (A) but with a = 1 , 
making the reaction factor a linear function of t i m e  instead of 

leaving it a cmtant as in (A) we obtain 

- - 

Plotting these parametric equations as in (A) , Figure 158 is obtained. 

Other functions can be selected for the reaction factor and with it 

other velocity rise rate curves can be obtained. The decision as tci 

which relationship represents the true case best (for particular 

propellants) w i l l  have to  wait until  experimental information, either 

direct as velocity measuranents or indirect in terms of contact area- 

time measurements for scnnc of these cases, becanes available. 

The yjeld: y ,  was considered constant or at least an averqe 

value in  the above calculations. Any other function can be selected 

in this  analysis as soon as there is some justification for it. 

I t  is believed that the above approach gives better insight 

into the happenings in Region I and allows for the expression of 

these happenings in  a satisfactoiy manner. 
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/ Detonation 

V e Aoc ity 
+- 

I r. Distance from Point of Ignition 

Figure 1u Representation of Fireball Hypothesis 
in Region 1 (Reaction Factor = C) 

Detonation 

r. Distance from Point of Ignition 

Figure 1sB Representation of Fireball Hypothesis 
In Region I (Reaction Factor = kot) 
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Kegion I1 - The Region Where the Reaction Fm, t  and the Shock Front 

Travel the L i v i d  Propellants Together. 

In Region 11, if the propellants were properly mixed, uniform 

or smooth propagation of the reaction front and the shock wave 

PJOuld occur. Since this is most l ikely not the case, the traces 

nust be considered average curves since actually they would kive 

s m l l  steps, l ike a stairway, mperimposed upon them. These finer 

points can be added later on, after the overall hypothesis is de- 

veloped and assuming that enaugh infomation is available to do this. 

If the physical systan is very small or if the system is es- 

sentially unconfined, thus not capable of supporting pressure gra- 

dients, then the waves mild  travel with the velocity of sound as 

soon as these veloc .ties are reached. lfnder these conditions the 

velocity could be considered constant in the Pegion I1 with the 

reaction or detonation and shock fronts traveling together. 

Actually confinement, especially in the earlier stages, w i l l  

build up pressure and temperature due to the reaction taking place 

and w i l l  further increase the front velocities. Assuming the degree 

of confinement in tenns of the masses fllrrolmding the reaction, the 

pressures and temperabrrer can be estimated, and from them the iave 

velocities. Studies habe shown however tkt the velocities in 7 

liquids do not increase very fast with increase in  pressure so that 

the original assumption of essentially constant velocity in this 

region seems justified. 

. As the traveling waves approach th-?. boundary of the liquids, 
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the confinement decmases, and so the velocity differential betweem 

unconfined, or sonic, and the actual velocity decreases. nterefore 

a nraximua velocity w i l l  be reached in this regia which is a f i x t i o n  

of confinement, and dxich is also dependent upon the missile d i g -  

uratim and yield for specific propellants. 

Calculations have been d e  far confinement Init seem to be of 

lesser importance than other cmsideratians. 

Figure 16 represents schematically, for a particular condition, 

the velocity rise and followiry! decrease in Region 11. 

In Figure 16, detonation velocit>t is reached at point A. In 

an unconfined systen the v e l x i t y  m y  be amsidered amstant unti l  

the edge of the mixing region is reached. T h s  the line AB m i l d  

represent this case. If ccmfinenetnt is cxms idd ,  which is nahvdlly 

highest on the left hand si& of the Region 11, the wave velocities 

w i l l  still increase until ,  due to  continuous d e c - s e  in confinement ¶ 

they reach amaxinum, and thenwL1 decrease to a value above or 

equal to the Unconf- system, depexld-kg upon what the confinement 

is at the liquid-air baundary. Thus the actual case w i l l  be more 

closely represented by the curve A-A*-B'. 

The calailations for these curves i n  Region I1 are relatively 

simple. They can be carried art provided the equation of state, 

heat generation ami losses from a certain region, and constant voltme 

processes for conplete confinement, or appropriate volume changes 

for the various degrees of confinement, are considered. 

Verification of this p t  of the bwthesis is presented in the 

next section. 
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Figure 16 Representation of Fireball Hypothesis 
in Region If 
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Figure 17 Representation of the Fireball 
Hypothesis in Region If1 



Region 111 - Separation of the Shock Wave and the Reaction Front and 

Travel of Fach Through the Inerr Liquid 

When the shock wave, driven by the reaction front, arrives at  

the edge of the mixing region, the shock wave w i l l  enter t h i s  region 

being attenuated through the new medium. The reaction front riot 

being driven as it was in +&e mixing region, w i l l  be attenuated much 

more rapidly. The shock wave moving ahead of the reaction front, 

w i l l  arrive a t  the container wall giving an impulse to  this wall, and 

upon being reflected it w i l l  reverse its direction and move toward 

the reaction front. When the two fronts meet, the shock front w i l l  

again be reflected in the original direction and thus w i l l  bounce 

back and forth between the walls and the reaction front. While the 

shock wave gives continued pressure impllses to  the container walls, 

the wall may actually start expanding and moving out. phis phenomemn 

has been observed in high spa-d photogmpbv of exploding missiles. 

Figure 17 shows more detail of Region I11 and a schematic indi- 

cation of the phencnnenon occurring. The actual velocities of both 

the s k  k front and the reaction front can be calculated with the 

shock front taking up energy fran the reaction front every time it 

is reflected from it. Thus the velocity of the shock wave w i l l  

increase and t h e  distance traveled between reflections will rapidly 

decrease. These phenomena continue until both the shock wave and 

reaction front arrive at  the already moving boiuadary together. 

Region I V  - The Liquid Propellant-Air Interface, Actually A Region 

Where the Liquid Boundary Begins to  Move and Where the 

Reaction Front Forming the Fireball and the Shock Wave 

Emerge. 
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when the reaction front and shock front reach the liquid 

propellant-air interface which most probably has begun 79 move 

slightly, two distinct phenomena occur. 

A. The shock wave in the liquid is t v f o r m e d  into a shock 

wave in air. This is a wave-to-wave phenomena transition, 

essentially not involving mass transport. 

B. The reaction front, or detonation front, is transformed into 

a moving mass front. This is a transition from a wave phe- 

nomenon to a particle phenomenon. 

I t  seems that t h i s  may w e l l  be the reason why a t  this point the 

two phenomena, as for instance represented by the velocities, follow 

different paths. 

The shock wave experiences an increase in  velocity as it crosses 

from the liquid into the a i r  through possibly a small vapor layer. 

Very little information could be found a,but the transition o f  a shock 

wave from one medium into another and especially for  the case where 

the c q r e s s i b i l i t y  is so different. 

The reaction front, when reaching the interface also as a vme 

phenomenon w i l l  POW have t o  change into a particle phenomenon where 

the propellau,t particles have t o  move out forming the fireball boundary, 

thus involving tremendous amounts of mass transpart. This transition 

nust produce a rativ- abrupt change in  the velocity in a rather small 

region. 

These phenomena are represented schematically in Figure 18 for 

Region IV. 
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Figure - 18 Graphical Representation of Fireball 
Hypothesis in Region IV 

1 

CFB 

.c 

Fireball 

' x b a l l  Radius, r 

Figure 19 Graphical R..presentation of Fire,ball 
Hypothesis in Region V 
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Region V - The Region in Which the Shock Wave Travels Through the 

Atmosphere as an Air Shock and Where the Fireball Grows 

and Develops Separately Far Behind the Shock Wave. 

After separation of the shock wave and the rwction front, each 

of these phemnena follow their own physical laws and relationships. 

See Figure 19. 

Fortunately some experimental information is available in this 

region on both the shock and the fireball. All this infomation, 

however, is for considerable distances from the liquid-air interface, 

and theory again will have to bridge this gap. 

Air Shock 

The attenuation of the air shock can be approximated by the well- 

known equations of compressible fluid flow and can be expressed in 

tern of the pressure ratio across the shock. 

where 

V = shock velocity S 

= velocity of sound at Po cO 

y = 1.4 for air 

P,/P_ = pressure ratio across shock 
t u  

The pressure ratio can also be expressed in terms of the pro- 

pellant weight, the yield, the distance from the point of ignition 

and sane cmtants. 
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Equation (SO) can now be substituted into Equation (49) t o  obtain 

the desired relationship, giving the air-shock velocity in terms of 

the distance from the point of ignition. Spherical geametry was 

assmed t h rough t  in these derivations and whenever the fireball 

moved, r was taken as the radius of the fireball. This was necessary 

since otherwise infomation like wind velocity, etc. would have t o  be 

added into the above equatims. Equation (51) is the desired result 

giving the air-shod. relationship for the fireball hypothesis in 

Region V. 
/ 

The symbols in Fquation (51) have the meanings as defined earlier 

with b and m constants. 

Equation (51) now allows the calculation of the velocity of the 

air shock a t  any distance fkm the missile. 

- Fireball Boundary 

The fireball lxnmdary can be calculated by utilizing the perfect 

gas relationships and considering either the spherical or hemis- 

pherical configuraticn. Then cmsidering the heat generated through 

the chemical reaction processes and the heat losses, the necessary 

constants describing the process can be evaluated. Information such 
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as that found in  the literature 1 6 , 4 9 , 5 0 S 5 1 S 5 2  is very helphl  in 

this treatment. 

Further considering that the heat or energy released minus the 

amount used in  raising the temperature and minus the amount l o s t  pro- 

duces the kinetic energy which is obsawed in  terms of the velocity 

a t  any time t or a t  any distance r . This is then the fireball 

velocity as expressed in Eqyation (52). 

In Equation (52),  Q is t!e energy released and available for 

acceleration of the mass m . As can be seen the fireball velocity, 

that is the boundary velocity, is inversely proportional to the 3/2 

power of the radius. Q can be expressed in terms of the total  weight 

of the propellants and the thermal yield. 

Figure 19 represents schematically the shock velocity and the 

fireball velocity in Region V indicating the separate paths which 

they follow. 

I t  might be well t o  mention again that i n  the presentation of 

the fireball velocity the actual center of the fireball was used as 

reference rather than the original point of igniLAon. 

If  that had not been done, then the rise of the fireball and 

draft due to winds and atmospheric conditions would bavc complicated 

ihe presen':ation. 
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Camplete Fireball Hypo thesis 

Having discussed the give parts or regions of the complete fire- 

ball hypothesis, they can be combined to give the complete picture, 

which is presented in graphical form in Figure 20. The different 

regions are not plotted to the same scale but rather to a scale which 

allows the presentation of the variations in ead. 

done by enlarging Region 1, ad especially Region IV, and by shrinking 

Region 111, and especially Region V. 

on. This was 

Figure 20 presents graphically the complete fireball hypothesis 

(not all detail shown) for a specific yield. Different yields would 

change it slightly, specifically the relative sizes of Regions I, 11, 

and 111. The higher the yield the smaller is Region I. 

The various regions of Figure 20 can be compared with the de- 

tailed regions and their discussion under the specific headings, 

Region I, Region 11, Region 111, Region IV, and Region V. 

Camparison of Results frm the Hypo thesis and Some Actual Data 

To show how thi hypothesis agrees kAth the sparse experimental 

infornation available, films of the S-IV Test were analyzed and 

analyses from t h ~  various reports were used. The hypothesis is plotted 

in Figure 20 and the available experimental points are superimposed. 

The equations used f x  plotting the calculated curves in Figure 23 

were Equations (51) for the air shcck velocity and (52) for the 

fireball velocity. 

These equations for the S-IV, where W = 91,200 lb., y - 0,045 avg., 
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with their constants evaluated, have the following form: 

f 
Shock Velocity: 

S r 

Fireba l l  Velocity: 

The results from t k s e  equations are the solid curves plotted 

in Figure 20. 

11, 111, and IV are so small that not much detail can be shown. 

In this figure which is plotted to scale, Regions I ,  

In this section a hypothesis was discussed which seem capable 

of giving insight into the actual processes taking place frum the 

time of ignition in a liquid propellant rocket explosion until the 

shock and the fireball have separated and dissipated. 

This hypothesis makes it possible to calailate curves for par- 

ticular missile configurations and yield estimates giving a package 

for complete analysis. 

The assumptions going into the analysis have been verified 

through actual experimental work the results of which are presented 

in the next section. 

The thermocouple grid analysis discussed earlier was the method 

used to supply the experimentation and verification. 
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E. Fireball and Post-Fireball Analysis 

Introduction 

After the detonation has occurred the behavior of the fireball 

from the explosion which is formed and then gradually changes into a 

mubustion products cloud is of importance. How large a fireball is 

formed, what is its temperature and what are the pressures inside? 

To be able to obtain this infomation the knowledge of how the fire- 

ball comes about, how it cools and then changes into a ccmhstion 

products cloud is essential. Thus, its behavior is really one of the 

last groups of phenomena or processes in a series. 

So for this phase of the work the knowledge of the fireball and 

combustion products ,laad, volume-time, pressure-time and temperature- 

time histories have been assumed known and then the composition of the 

cambustion phenomern has been detennined. The camposition of the 

fireball and of the combustion products cloud are important as well as 

their interaction with the atmosphere, expecially when toxic materials 

such as Flourine are used in the propellants. 

The volume-time, pressure-time, and temperature-time histories 

of the explosion from liquid propellants were chosen as input since 

they may be determined theoretically 20921 or may be measured in ex- 

periments thus givhg a check on the theoretically detennined infor- 

mation, with its statistical variations, etc. 

For this imrestigation the best infomation available at  this 

time has been used as input and then rather elaborate computer programs 
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have been used in obtaining the desired results22. Momogeneity of 

the fireball and of the camtrustion products cloud have been assMled 

in all calculations and this seems to be a reasonably good basis 

since the turbulence of the reaction processes is great enough to 

tend to mix the different products well. 

With the volume-time, pressure-time, and temperature-time history 

available, the mathematical equations controlling these processes 

were set up and then computer solutions mrked out to give the desired 

results. 

Only a portion of all the information which was generated by 

this analysis is reported here but it seeins ample to show the method 

of approach and the kind of results which can be obtained. 

The fuel-oxidizer combination chosen here as examples for this 

investigation were ones which are used and same which may become 

important in the future developnent of liquid propellant rockets. 

They are: 

RP-1/Lo2 

RP-1/LF2 

+ 1% F 

+ 10% F 
'H2/m2 + 5% F 

RP-1/L02 + 1% F 
+ 5% F 
+ 10% F 
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LHz/RP-1/W2 + 18 F 
+ 5 8 F  
+ 10% F 

For the above roambinations of fuel and oxidizer, assuming a 

quantity of propellants of about 100,000 lbs., the results which are 

all mnnalized are presented as follows: 

1. Fuel consumption versus time 

2. Volume of entrained air versus time 

3. P'rtial Pressures (of canbustion products) versus time 
Partial Volumes (of combustion products) versus time 

4. Partial Weights (of cantustion products) versus time 

Both the inpt information as well as the results are given in 

graphical form since it is believed that this method of presentation 

will give the maximum amount of information in the minimum amount of 

space. 

It might be mentioned that the method and canputer program de- 

veloped are rather general and by no means restricted to the above 

fuel-oxidizer combination. 

Theory of Appro ach 

Equilibrium Compo sition of Chemical Reactions of Liquid Propellants 

Taking Place in the Atmosphere. 

The purpose of this phase of the research program is to theoret- 

ically determine the amounts of product gases formed, as a function 

of time, as the result of a reaction involving liquid propellants and 

entrained air. This type of reaction is continuous since all of the 

available fuel does not react immediately and furthermore the resulting 
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fireball (which grows with time as more fuel reacts) continually 

en?xains air. Given the initial amounts of fuel and oxidant as well 

as the volme - time history of the fireball (theoretically determined 

or as observed from high speed films), equilibrium compositions can be 

determined. 

The equilibrium camposition for the system of n products of 

reaction is determined by the simultaneous solution of n+l- equations 

consisting of the equations of mass balance, pressure balance and 

the dissociation equations involving equilibrium constants. 

Assuming a constant pressure process as well as an instantaneous 

reaction time and makiry use of either theoretically obtained or 

experimentally determined pressure- time and temperature-time histories 

of the fireball, a solution is found such that the total theoretical 

volwne of the products of reaction is made identically equal to the 

total experimental volume by adjusting the fuel burning rate and/or 

adjusting the amount of entrained air. As a first approximation, it 

is further assumed that no air entrainment exists until all of thc 

available fuel is burned. 

To efficiently meet these d-s, a computer program has been 

developed. 

reactants: 

fluorine, and air. Fifteen products of reaction were considered. 

The program is general but limited here to the following 

liquid hydrogen, kerosene (RP-l), liquid oxygen, liquid 

The equations and method of solution follows. 



79 

Controlling Equa tions 

symbol Description 

moles of LHz A1 
moles of RP-1 Az 
moles of LO2 

moles of LFz A4 

moles of air AS 

Reactant 

%HZ 

A2c22x 

%O2 

A4F2 

AS fOz+ 3.79 Nz) 

4.79 

The reactants can then be written as: 

Consider the following products of reaction; s x h  that the right 

hand side of the equilibrium equation is 

where, 

N = total number of moles of products of reaction 

P = total  pressure 

= partial pressure of i t h  product 

The unkrowns are pili =: 1, . .lS), N. Hence 16 equations are 

P i  

necessary for a solution. The balance equations are: 
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(a) Pressure Balance 

(c) QxygenBalance 

(e) Carbon Balance 

The above 6 equations can be reduced t o  S equations by eliminating 

Since we w i l l  be dealing with hydrogen (either LH2 and/or Rp-l), P' 
'p 

equations. The S equations are: 

can be eliminated by dividing the 2nd equation into the las t  4 
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The remaining 10 equations required for a solution are the dis- 

sociation equations. Tables of equilibrium coefficients are available 

(23) in tern of partial pressures rather than concentrations of the 

products of rtaction. The appropriate equations are given below 

2 
(651 

(66) 

(67) 

2H + 0 + H20 SU& that p1 - K1pl1pl5 = 0 

c + 20 -+ C O ~  

2H + H2 

that p2 - ~2p14pis = o 

ZN + N2 that p4 - ~4pf2 = o (68) 

such that p3 - K3pfl = 0 



a2 

2F + Ft 

20 -b o2 

H + F + H F  

c + o + c o  

N + O + N O  

O + H + O H  

such that p5 - Kspf3 = 0 (691 

such that p6 - K6pt5 = 0 

The equilibrium coefficients Ki vary systematically w i t h  the 

temperature of the reaction. 

reaction calculated at  a particular temperature and pressure, are 

I t  is assumed that the products of 

fomed instantaneously. Hence, one need only solve the above 15 

equations for given values of P, T, and the amounts of reactants, to 

arrive a t  the equilibrium composition. 

Solution of These Equations 

Since the dissociation equations are non-linear, there exists no 

direct solution. The Newton-Raphson method is used to obtain a 

"trial and error" solution. 

(1) Initially, estimates of pi(i = 1, . . .IS) are taken and 

each of the 15 equations is expanded in a Taylor's series 

about the estimated point, pi . 
(2) Corrections to pi are then found (Api) and the new esti- 

mates of pi , given by pi + Api , are used in place of the 

ini t ia l  estimates in (1). 
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procedure is repeated until Ap becomes negligible. i 

a solution to twu non-l+.zar equations; f(x,y) = 0, 

Let the initial estimate of the required solution (x,y) by the 

point (xl,yl) . w i n g  f ,  g in a Taylor’s series about the point 

(X1’Y11’ then 

. y + ... af 
aY 

. x + -  A f  t - af 
ax (77) 

(78) 

where 

Hence 

correct ion 

A X = x - x 1  (81) 

AY = Y - Y1 (8 2) 

the non-linear equations have been transformed into linear 

equations of the form 
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f(xlryl) + fx . Ax + f . Ay = 0 Y 

etc. , and the derivatives of second order af f = -  af where fx = - 
and higher have been neglected. 

ax y ay 

The equations are solved for Ax, Ay and new estimates are given 

by x1 + Ax, y1 + Ay. The procedure is repeated until the desired 

accuracy is obtained. 

The fu l l  procedure can best be demonstrated w i t h  an example. 

Example 
Consider a solution to 

2 f(x,y) = x y + y2 + 3 = 0 

g(x,y) = x3 + m2 + 4y = 0 

then 

f X = 2 x Y  
f y = x  2 + 2 y  

g~ = - 4 ~ y  + 4 = 4(1 - XY)  

Let x1 = 1, y1 = -1, be the in i t ia l  estimates. 

Then substituting into the linear correction equations 

3 -   AX - Ay= 0 

- 5  + lk * 8Ay 0 0 



85 

the solution to the above equations is 

x 0 38/30 1 1 . 3  

y * 7/15 0.5 

The new estimates of x, y are given by x2, y2 where 

x2 = x1 + hx = 

y2 * y1 + By = -0.5 

2.3 

Substitpting into the linear correction equations, then 

0.6 - 2.5 hx + 4.3 By = 0 

9 + 15.4 Ax + 10 Ay = 0 

The solution ta thc above equations is 

Ax G -0.4 

by 2 -0.3 

The new estimates for x,  y become 

x + Ax = 1.9 

y2 + by = -0.8 

2 

The correct solution is (2, -1). 

For more than 2 unknovm, the linear correction equations take 

etc . 
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the form 

. . . .... f(x,y,z ,...) + fx Ax + f Ay + f Z  Az + = 0 (8 sa) Y 

g(x,y,z, ...) + % . Ax + % . by + gz . Az + .... = 0 (8 Sb) 

h(x,y,z, ...) + % . Ax + 3 . Ay + hz . Az + .... = 0 (85c) 

i(x,y,z ,...) + .... 
j(x,y,z, ...) + ..... 

f 
etc . 

where the subscripted variable, fx for example, represents the partial 

derivative of f(x,y,z ,...) w i t h  respect to  x. 

Denoting equations (60) t o  (74) by Bi ( i  = I, .... IS]; the 

correction equations are given by 

............................ 

............................ 

where Ai For 

example, +,14 is the partial derivative of quation (7)' i.e. B, , 
with respect to  p14. The equations are solved for Api ( i  - 1 to 15) 

by f i r s t  assuming ini t ia l  estimates of pi . Subsequent estimates of 

p. are given by pi + Api and the procedure is repeated unt i l  Ap: 

i s  the partial derivative of Bi w i t h  respect to  p 
,j j .  

1 L 

apprcaches zero. 
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The ccefficients of the corrxtion equations (Ai .) are denoted 
S J  

by matrix A and the constants Bi 
Hence, in matrix notation, the set of linear corntion equations is 

are denoted by the vector, -B. 

given by 

B = A . A p  

and its solution is given by 

AP = A - ~ B  

where A - ~  is the inverse matrix. 

(87) 

Outline for the Fortran IV Compu ter Program 

The program is presently designed to handle nine sets of values 

of pressure, temperature and volume for a given propellant mixture. 

That is, equilibrium coefficients are incorporated into the program 

for values of temperature between 3000 K and 1400 K in 200 degree 

increments. 

Input Data 

The following information is required: 

Weights of reactants, i.e., the total amount of fuel 
and oxidizer available. 

Yield 

Temperature of reaction 

Pressure at which reaction occurs 

Volume of products of reaction 
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Assumptions 

lhe following assumptions are implied: 

(a) Constant pressure process 

(b) Instantaneous reaction time 

(c) No air entrainment until all of the available pro- 
pellants are used up. 

Procedure 

For each data point (i.e. for a given value of P, T, and V) 

the program determines the partial pressures of the products of 

reaction such that the theoretical volume of the prodsrt gases is 

identical to the given input volune. 

For the first data point, however, since 110 value of ~ l t r m e  is 

availablc, the yield is used to dete- the initial amounts of 

propellant h e d  and the partial pressures are then determined. 

For subsequent data points, the fuel burning rate is ccmtirnlally 

adjusted ard partial pressures are calculated in turn so that finally 

the resultant theoretical volume becomes identical to the given 

(theoretically determined or experimentally evaluated) volme. 

This latter procedure is repeated for subsequent data points 

until all of the available fuel is used up. Fnrm tlm on, air is 

added as a reactant d i n e d  with all of the available fuel in order 

to satisfy the "identical volwne" condition. 

The program also converts the resultant partial pressures into 

the following: 

1. Pound Moles 
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2. Pressure-Ratios, Mole-Ratios, Volume-Ratios 

3. pound Weights 

4. Weight-Ratios 

The fuel burning rrte, the amount of entrained air, and the theo- 

retical volume for each data point are also detemied. 

Subroutine Invert 

The subroutine solves the set of linear equations 

~p = A - ~ B  

The input data card is 

CALLINVERT(A,NA,NAD,B,NB,NBD,DETERM,IERROR) 

where 

A = matrix of order NA 

B = vector having NB = 1 constant vector 

NAD = row dhiension of A in main program 

NBD = row dimension of B in main program 

IlETERM-dUmny 

IERwlR = Qmnry 

d he output consists of A - ~  placed in A, p place<l in B, and 

the determinant of A placed in DETERM. IERROR is an error signal 

equal to 0 for successful inversion; equal to -1 for overflow, equal 

to +1 if no inverse is obtainable. 

The maximum size of A can be 100 x 100. 
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symbols L'.-ed in Main program 

subscripted Variables 

A 

B 

C 

P 

PR 

PT 

T 

TNT 

V 

W L  

hrr 

WrR 

- coefficients appearing in the correction equations 

- crBl&ant appearing in the correction equations 
- equilibrium constants 
- partial pressure 
- partial pressure-ratio, mole-ratio, volume-ratio 
- total pressure 
- temperature 
- partial moles 
- volune 
- molecular weight 
- partial weight 
- partial weight-ratio 

Floating Point Variables 

F2 - weight of liquid fluorine available 
H2 - weight of liquid hydrogen available 
O2 - weight of liqyid cnrygen r-railable 
RP1 - weight of liquid RP-1 available 
REWR - mole-ratio of entrained air 
RWAIR - weight-ratio of entrained air 
TN - total theoretical moles of products of reaction 

TNE - total experimental moles of products of reaction 
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I W L  

WAlR 

- total theoretical volume of products of reaction 
- weight of entrained air 

X 

YIELD 

The fixed point variable, MA, is the lILrmber of experimenG1 

- number of carbon atoms in the RP-1 molecule, CxHtx 

- percentage of fuel burned at time t'zerott 

runs wit'i. combinations of IH2, RP-1, M2 and LF2. 

The Fortran IV program follows with an example of the output 

data for one of the nine data points using W2/RP-1/U12/LF2 and 

entrained air. 

Input Information 

Many different quantities could have been chosen for the input 

infomation based upon which the desired fireball canposition and 

atnospheric chemistry could be calculated. 

For this investigation the 

Volume-time history 

Pressure-time history 

Temperature-time history 

were taken as the principal input infonnation. 

The reason for this choice was that another phase of this over-all 

program deals with the theoretical determination of these functions 

and most of all that it is possible to measure the above quantities 

and thus verify any theoretical results by actual field experimentation. 

This latter fact seems to be of extreme importance if theories are 

developed since without experimental verification they are of little 

use and certainly not much credence can be given to them. 
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Other f: ctors such as fuel burning rates, etc. were selected by 

but the investigators of this project do not see how 

such quantities could be verified experimentally and therefore would 

remain assumptions throughout the work. 

As mentioned above, much work is being done on the determination 

of the volume-time, pressure-time, and temperature-time histories of 

the explosion phemena from a theoretical point of view. Rather 

than wait for the results from this separate investigation and be- 

cause of contract carmitments it was decided to present the methods 

of obtaining the fireball and combustion cloud camposition fran such 

input data as mentioned above and for the present ccnnbine both theory 

and experimental information to obtain the most plausible functions 

at th is  time. 

A brief description of how the volwne-time, pressure-time, and 

temperature-time functions have been determined for this report follows: 

Volme-Time History of Fireball and Combustion Products Cloud 

from Liquid Propellant Jhplosions 

The volume of combustion products produced by liquid propellant 

explosions transgresses a number of stages with time, changing in 

shape from one typical configuration into another. These stages can 

be observed in the high speed film records of such explosions and 

can be, in part at least, analyzed mathematically or theoretically. 

These major stages are: 

1. Hemisphere 
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2. Truncated Sphere 

3. Sphere 

4. Pinched Sphere 

5. Toroid 

The above 5 stages are distinct and can be observed in a t  least 

the larger explosions. 

Stage 1. Hemisphere 

This stage is the earliest one which can be observed and is of 

relatively short duration. I t  involves a very rapid growth of the 

cambustion products both along the ground and up into the atmosphere 

so that the shape can best be approximated by a hemisphere. The 

size of this ini t ia l  hemisphere depends upon the yield of the liquid 

propellant explosion, the very rapid canbination of the fuel and 

oxidizer so as to form detonation and shock waves. The larger the 

yield the larger the ini t ia l  hemispherical fireball. 

Stage 2. Truncated Sphere 

Following the very rapid formation ob the hemispherical fireball 

from liquid propellant explosions the hot combustion products begin 

to  rise. This upward motion and the convection currents due to  the 

bouyant forces undercut the rising mass thus forming a truncated 

sphere, in  contact with the ground at  the f la t  base. 

As the center of the mass rises the fireball changes more and 

more from the original hemisphere into a sphere, the shape which is 

attained when the comhstion products become essentially tangent to 

the ground. 
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This stage in  the develqent  is referred to  as "Lift Offt, a t  
20,Zl which most of the fuel seems to  have been consumd 

Stage 3. Sphere 

Ham attained essentially a spherical configuration a t  "Lift 

Off" the cambustion products continue to rise as a rather turbulent, 

well mixing sphere which however gradually changes shape from the 

almost perfect sphere into the first slightly pinched and then rather 

pronounced pinched sphere. 

Stage 4. Pinched Sphere 

The change fram the spherical configuration to  the pinched sphere 

is rather gradual and then as the indentations become larger and 

larger, the appearance of the sphere is lost. A cross-section by a 

vertical plane through the center would give the appearance of a 

"Bar Bell". 

As this process continues the indentations w i l l  eventually touch, 

foning a toroid. 

Stane 5. Toroid 

F m  the time the toroid is formed the initial contact point of 

the indentation becomes a hole with the general configuration of a 

ring or doughnut. 

As this toroid grows in diameter the size of the hole increases 

but the volwne now a t  this stage of development increases relatively 

slowly. 

Finally this well defined configuration diffuses into the 
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Figure 21 Typical Development Configuration Stages 
of Liquid Propellant Explosions 

Stage 1-. Hemisphere 

Stage 2-. Truncated Sphere 
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atmosphere losing its resemblance to  any characteristic shape and 

being controlled to a great extent by the prevailing atamspheric 

conditions. 

Each of these stages as described above and scheanatically 

shown in Figure 21, takes a longer and larger part on the time scale. 

Stage 1 may occur in fractions of a second while the last stage w i l l  

be a matter of minutes. 

Utilizing this 5 stage concept for the purpose of analysis a 

, volume versus time curve can be obtained, either theoretically by 

the use of restricting assumptions or by the actual analysis of 

high speed film records of liquid propellant explosions. 

The variation is greatest in Stage 1 which is controlled by 

the yield while the statist ical  differences are rather small (but 

somewhat dependent upon atmospheric conditions) as l6ng as the same 

qmntities of propellants are involved and it is assumed that es- 

sentially a l l  the propellants take part in the formation of the 

fireball and cloud 20,21 

Figure 2 2  shows the volume versus time curve for the S-IV PYRO 

experiment. The yield as reported was about 4 1/2% which is i n  

agrement with the predictions of reference (1). 

Similar volume versus time curves have been developed for the 

various fuel axidizer combinations considered and reported upon here. 

Pressure-Time History of Fireball and Cambustion Products Cloud 

from Liquid Propellant Explosions 

The pressure-time history as presented here and as used as input 
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data for the determination of the caposition of both the fireball 

and the combustion products cloud was.determined partially from 

preliminary theoretical considerations" and partially frum the 

analysis of field data obtained by the liqyid propellant explosion 

program of project PYRO . 22 

The theoretical anaLysis was necessary for the early time 

processes since no experimental data is available wri tiie results 

were then checked and agreed w i t h  experimental re 

stages 

I in the later 

In general it might be said that the pressure immediately after 

ignition rises very rapidly to very high values inside the nussile 

due to the confinement of the propellants and the tanks, reaching a 

maximum somewhere as the reaction front progresses toward the boundary 

of the missile configuration. After this maximu is reached the 

pressure falls very rapidly to almost atmospheric conditions. 

F m  the time of "lift-off" of the fireball vhich occurs at 

essentially atmospheric pressurez4 the pressure drops very slowly due 

to the rise of the explosion products and the effect on atmospheric 

pressure due to altitude. 

The pressure-time history presented here for approximately 

100,000 lbs. of propellants was used for all the propellants reported 

upon here. 

Analysis of the sparse experimental information of liquid pro- 

pellant explosion experiments seems to support t h i s  general pressure- 

time history. Ths yield productd by the explosion will change the 
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early values of the presare.  Again 

4 1/2% was taken based upor! the mgst 

(2) 

for the amlysis here a yield of 

l ikely value as given in reference 

The actual curve used here is presented in Figure 2 . If better 

information is to be used, an experimental program could be instituted 

to actually measure these pressures, an important reason for this 

choice of input information i s  because it allows theoretical deter- 

mination and experimental verification. 

Temperature-Time History of Fireball and Combustion Products Cloud 

f r m  Liquid Propellant Explosions 

The third and las t  principal input information needed for the 

deterrhntion of the camposition of the fireball and combustion pro- 

ducts cloud including a i r  entrainment and atmospheric interactiun is 

the temperature- time relationship. 

Again theoretical considerations ad the available rough experi- 

mental observations of fireball tesnperature and variations with time 

indicate that the intial  temperature is  close t o  the maximum obtainable 

by the ,,rticular propellants involved. Then, a t  low yields a t  least, 

since only a small part of the propellants take part in the ini t ia l  

stages of the fireball formation the reaction of the remaining fuel 

and oxidizer, both in the propellants as well as the atmosphere, make 

the temperature drop with temperature in  an almost linear rmer .  

This is observed in  theoretical work 20921 and seems to be closely 

approximated by the available experimental iiformation . 22 
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This linear decrease of the temperature with time continues 

until the incandescence of the fireball ends often referred to as 

the lldurationll which can be appmxjmated as shown in 24 . 
For the purpose of analysis here it was assumed that the actual 

variatidn can be closely approximated by further linear decreases 

changing the slope to a value 1/2 the previous one for each subse- 

quent "duration" time interval. 

By this method a m e  representing the tenperature-time history 

of the liquid propellant explosion is obtained which from both theo- 

retical and the available sparse experimental observations seems to 

appmximate the actual conditions. This again is taka here for low 

yield (4 1/2% in this case) liquid propellant explosions. 

Again it is believed that an experimental program can be designed, 

if desired, t o  obtain this temperature-time history for various cases 

and verify or modify the presently used infomation, which is presented 

in Figure 2 4 and again was used for all the fuel-midizer cambinations 

analyzed a& reported upon here. 

It should be mentioned again that the volume-time, pressure-time, 

ard temperature-time histories were selected as the principal input 

data because it is felt by these h-estigators that th is  infomation 

which can be generated with appropriate assumptions theoretically, can 

be verified experimentally. 

time, arid temperature-time histories are of great interest to other 

investigatzrs for various reasons. A number of groups are presently 

engaged in trying to measure pressures and temperatures within fire- 

balls and of combustion products clads produced by liquid piopcllant 

explosions. 

In addition these volume-time, pressure- 
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It should also again be emphasized that in Cus investigation 

hamogeneity of the fireball as well as of the coonbustion products 

cloud was assumed. These assumptions seem to be reasonably well 

satisfied because of the tremandous tuAnhnce observed within the 

fireball which tends to produce thorough mixing with a relatively 

short time. 

In addition to the principal input infonnation, the volume-time, 

pressure-time, and temperature-time functions it is necessary to 

h o w  

4. The Type of Propellants 

5. Propellant Composition 

6. Propellant Quantities 

7. Yield 

4,  5, and 6 are easily obtainable as original data, while 7 is 

selected to obtain the results for this particular value of yield, a 

value which may again be dictated by theoretical considerations. 

Type of Propellants 

The type of propellants selected for this presentation are can- 

binations of fuel and oxidizers which are presently used in liquid 

propelled rocket systems or combinations which may become important 

in the future developnent of these rockets. 

The method however used is perfectly general and any propellant 

type and combinations could be analyzed in the same manner. 

The typcs selected for this presentation are: Ref. 75 
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1% F 

+ 10% F 
'Hdm2 5% F 

RP-l/LOz + 1% F 
+ 5% F 
+ 10% F 

LH2/W-1/LOZ + 1% F 
+ 5% F 
+ 10% F 

Propellant Composition 

The propellant type was outlined above with the composition of 

tire1 to oxidizer chosen ns follows: 

RP-1/LOz 

w- l/uz 

1 : S byweight 

1 : 2.25 by weight 

1 : 2.6 : 5.86 by weight 

In the combinations with Fluorine traces the weight ratios of 

the main constituents were the same as given above. 
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The chemical caenpositia? of the RP-1 was taken as C11.6H23,2 

which was obtained from reference (25). 

propellant Quan tities 

The propellant quantities were taken as 100,000 lbs. in all cases. 

This allowed the standardization of the pressure-time and temperature- 

time histories for the present analysis, since it s- that the quan- 

tity of propellants used has the major effect on the time axis of 

pressure and temperature. 

Yield 

The yield, the energy release as a fraction of the theoretical 

maximum, far these calculations and analyses was taken as 4 1/2% 

which from previous theoretical investigations and from experimental 2 

seems to come close to the statistically probable 

value. 

Again it might be mentioned that other values could be taken 

just as well without changing the method of analysis. The resulting 

canpositions of the fireball and explosion products cloud would, how- 

ever, be different. 

With the input information as described above a Nrmber of cases 

were analyzed and many quantities caicuiated. 

computer programs were developed for this purpose and the main program 

will be presented in the appendix. 

Rather elaborate 

The results which seem to be most pertinent to this investigation 

are presented in the reference 75 , mostly in graphical form. 
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Results Obtainable 

Utilizing the data information as discussed above 'and the cal- 

culation and analyzing procedures outlined earlier, many important 

qunatities can be calculated. 

Because of the space limitations only one set of the more 

complicated combinations will be presented here. Nkny more have 

been wrked out in connection with this wrk and have been reported 

by Dr. Farber and his group in the references 7s . 
As mentioncd in earlie;. work the same pressure-time, and 

temperature-time history was used for all the propellant combinations 

but individual volume-time histories had to be worked out for each 

different propellant combination. 

Through a rather large iterative computer program such quantities 

as partial moles, partial pressures, partial volumes, partial weights, 

volume of air ectrained, weight or air entrained, unburned fuel 

present , etc. , were calculated. 
Some of these quantities were tlien normalized and one set is 

presented here graphically as a function of time. They are 

a. Fuel and oxidizer consumption wgt. (normalized) Fig. 25 

b. Volume of entrained air t t  Fig. 26 

c. Partial Pressures I t  Fig. 27 

d. Total Volumes Fig. 28 

e. Partial Weights I t  Fig. 29 
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These results and the manner of presentation, it is believed 

give a good picture of the composition and its time Yiariation of the 

fireball and combustion products cloud. 

I t  is believed that the graphs are self-explamtory and the 

results can easily b compared when different fuel-oxidizer 

combinations are used. 

The Fluorine trbcer quantities added seem to  have a hypergolic 

effect upon the cryogenic propellants to  render the predictions of 

the most probable ignition times and delay times, and thus the yield, 

more certain. 
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PART I1 

EXPERIbENI'AL VERIFICATION 

In t h i s  section the experimental work which was carried out in 

support and for the purpose of verifying the theoretical work will be 

discussed. The experiments verified the theoretical prdictions of 

explosive yield and other characteristics 02 liquid rocket propellants. 

All the experiments can be divited into two large classes, labora- 

tory experiments and explosive field experiments. 

The laboratory experiments were carried out with inert components 

to reduce the hazards and only with small quantities of explosive 

materials so that explosions were not expected. 

The laboratory experiments can be further subdivided into h f i x i n g  

kction developnent and electrostatic charge generaticn. 

The Explosive field experiments were carried out to substantiate 

the information obtained by theory and then verifiid in the laboratory. 

The field experiments were carried out with actual liquid rocket pro- 

pellants, and substantiated the laboratory data, and in addition pro- 

irided actual explosion information. They can be grouped as m i x i n g  and 

explosion experiments, elsctrostatic generation and auto ignition ex- 

periments. 

The pres,nt section will discuss in detail the experimental methods 

used and the results obtained. 

Laboratory Exp eriments 

The first large program carried out & the laboratory was the 
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developatlent of methods by which the k i n g  Function could be deter- 

mined, either for verification of the theoretical one or as  a direct 

input into the Seven Chart Approach. 

Mixing Function Determination (1) 

I t  is always desirable to check any theoretical work with ~ual 

experimentation so in t h i s  section it w i l l  be shown that four methods 

have been developed which can give the Mixing Function experimentally. 

The Mixing Function is defined as the proportion or fraction of the 

propellants mixed at any time T . This fraction can be expressed in  

a num5er of ways as w i l l  be seen. I t  can be defined in terms of con- 

tact area or surfaces proportional t o  this area, in  terms of liquid 

interfaces, of mixing surface profiles, etc. 

I t  w i l l  be shown how this was done in various manners by four 

experimental methods which are independent bt complement each other. 

In many experiments two of these methods were used simultaneously so 

that the results could be campared for one and the same experiment. 

These four methods are: 

A. The Film Analysis 

B. The Wax Cast Analysis 

C. The Vibration Mixing Analysis 

D. The Thermocouple Grid Analysis 

The film analysis is a method which depends on high-speed pho- 

tographic coverage of the mixing phencnnena, followed by rm analysis 

and proper interpretation of these records. 

The Wax Cast Analysis "freezes" the mixing process a t  different 
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stages of the mixing so that the solidified huge can be analyzed a t  

a later date and a t  leisure. 

The Vibration Mixing Analysis Finaulates small fluid elements by 

different density, different color, different shaped particles such 

as marbles. By shaking then on a vibration table for a certain length 

of time, and by removing particles periodically, such things as evapor- 

ation or sp i l l  losses may be simulated. 

Thm the mixing phemnena can be studied in small incremental 

steps, using marbles or particles as fine as  powder. 

The Thennocouple Grid Analysis, the best and most powerful of the 

four methods, consists of a three dimensional grid of fine them- 

couples, which produces a time record of temperature and its variation 

a t  many points in a region in  which fluids a t  different temperatures 

are being mixed. These readings can be interpreted as w i l l  be explained 

to  give insight into the phenmena leadhg up to  and producing the 

explosive yield. 

In the following pages these four methods w i l l  be discwsed in  

detail,  and some of the results which have been obtained w i l l  be pre- 

sented. These results will give an indication of the value of these 

study methods in  investigating the mixing phenomena of liquid rocket 

propellants. The rcsults presented here are not intended to simulate 

a particular missile or missile failure (This w i l l  be done in  the las t  

two sections of this report) but rather to demonstrate how these methods 

can be employed in the study of the mixing produced by many different 

missile configurations and types of failures. 
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A. Film Analysis 

For the application of this method for analysis, it is necessary 

t o  obtain a high-sped pictorial record of the mixing phenomena, in- 

volving high-speed photographic equipment. 

transparent configurations \e re  chosen and then, by placing mirrors 

a t  various angles, three-dimensional views were obtained on the same 

For the present investigation 

frame of the high-speed recording film. For non-transparent arrange- 

ments, X-ray, Gamma-ray, or tracer techniques could be used in a 

similar !r!mer. Some of the la t te r  techniques haw been used by one of 

the authors in concentration studies and profile interface studies of 

two- and three-phase mixtures 1,15,49,7S ,104 

Figure 30 presents an overall view of the experimental apparatus 

used i n  the study of the m i x b s  processes between hot or cold o i l  and 

water, hot wix and wter, LU2 and kerosene, etc. I t  consists essen- 

t ia l ly  of a Pyrex glass tube fi l led to a desired level with one liquid, 

and another Pyrex tube above f i l led with the desired amount of the 

other liquid. A diaphragm between the tm glass tubes holds the upper 

liquid in  place. A t  time zero the diaphragm is pulled out by a quick 

motion so as to  remove it almost instantanemsly. Slower removal of 

the diaphragm according to  a programmed input can, i f  desired, simulate 

a progressive failure. 

not desired, a second fixed diaphrzgm can be inserted in  addition t o  

the removable one so that when the la t ter  is removed, a desired size 

opening a t  a desired location remains, simulating a particular type of 

failure. 

If a complete diaphragm or bulkhead failure is 
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Figure 31 shows a nwnber of frames for o i l  above and water 

(below) simulating bulkhead failure in  a 1 1/2 in. I.D. tube and a 

ullage space of 4 114 in. Successive frames taken a t  64 frames per 

second show the progression of the mixing process from three views, 

120 degrees apart. 

The analysis can be made directly from the frames as projected 

on a screen or from a more permanent record by either enlarging than 

on photographic paper or tracimg the outlines of the mixing fronts as 

sham in Figure 32. 

Figure 32 further indicates the reproducibility of the mixing 

experiments by showing the traces of three identical nms and how 

close the total profile areas match. 

From the three-dimensional views or traces, the total surface 

areas were determined by f i r s t  cutting the total volume into thin 

inegularly sbped discs and then graphically obtaining the peripheral 

surface of the discs. The resulting outside surface area, or A. , 
can then be plotted versus film frame or versus time (see Fig. 33). 

Since there are, however, droplets or particles of one liquid 

(vapor.or solid) surrounded by the other within the space circmcribed 

by the profile, to  get the true contact area between the liquids, 

these additional surfxes must be taken into account. This was ac- 

complished by a tedious method of counting these droplets, determining 

their size and surface areas, and adding these new areas t o  the profile 

areas. The ratio of the t o t a l  area to the profile or outside area 

of any particular frame was defined as the '"lhrbulence Factor" for 
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this frame. This slow process of determining the total areas or 

:&-..it areas was shortened considerably later by the very satis- 

factory approximate method of camparing frames for different runs 

with standard frames for which the "Turbulence Factors" had been de- 

termined carefully, and ascribing the same "Tbrbulence Factor" to 

other similarly appearing frames. 

Figure 3q presents the '"hrbulence Factor" for the runs presented 

i n F i g u m 3 3 .  

Using Figure 33 and Figure 34, and combining them, gives the 

total area or an area di:ectly proportional t o  the true contact area 

between the liquids. The result is seen i n  Figure 35. 

The '"Ibrbulence Factor" has been further substantiated by the 

Wax C a s t  Analysis which w i l l  be described below. 

Figure 35 , i n  addition to giving the total are&, shows the re- 

narkable reproducibility of these experiments. Furthennore, this 

figure demonstrates the effect of mixing energy. 

w i t h  a 2 1/4 in. ullage space and three runs with a 4 1/4 in. ullags 

space. Considerably more area is obtained for the 4 1/4 in. ullage 

space since the upper liquid obtained greater kinetic energy before 

mixing. In these, as well as a l l  other experiments, it was observed 

that the reproducibility of mixing increases with the increast in 

mixing energy. 

I t  shows three nms 

The Film Analysis as described above proved t o  be an invaluable 

aid in  the study of the mixing phenomena of l iquids .  The results, 

however, were not taken as correct unless they checked with the results 
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of another of the methods described below, simultaneously applied to  

the same experiment. 

In the case of the mixing of hot and cold liquids with tempera- 

ture differences great enough to produce boiling of one of the liquids, 

another factor - the "Boiling Factor" - was introduced &ich accounted 

for the surface produced by the vapor bubbles of one of tne consti- 

tuents. 

A number of different diameter Pyrex glass tubes were used in  the 

mixing studies rmging from 3/4 in. I.D. to 6 3/4 in. I.D. to give a 

relationship for size. In these experiments the effect of surface 

tension could be observed since it altered some of the phenomena in the 

snallest sizes. 

B. Wax C a s t  Analysis 

The Film Analysis as described previously was a dynamic method 

of analysis and the results had to  be obtained by interpreting recor- 

dings of the actual mixing phenomena through the profile area and 

utilizing the turbulence, boiling, and freezing factors t c j  obtain the 

total area or contact area. 

The Wax Cast Analysis allowed the llfreezingll of the actual mixing 

process a t  various stages of the mixing by mixing hot wax with cold 

water. By varying the temperatures slightly the wax would solidify 

earlier or later in the mixing process and the wax casts obtained i n  

this manner could bc analyzed a t  leisure a t  any time thereafter. 

The experimental apparatus a d  setup for the Wax Cast Analysis 

is identical with the one for the Film Analysis, and so for many 
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experiments both methods of analysis were used sinrultaneously and 

checked against each other. 

Figure 3 6 shows a series of such wax casts representing a can- 

plete experiment. Excellent reproducibility indicated by the Film 

Analysis allowed the experiments to be carried out identically except 

for slight variations in temperature. The wax casts indicate the 

progress of the m i x i n g  process. The profile area was determined from 

these tax casts by twp methods: A small grid was laid out on the 

surface and then the area determined by conting squares. This pro- 

cedure was checked by dipping these samples into paint and letting 

them dry. 

density and by weighing the sample before coating and after coating, 

the profile area could be determined. Essentially the same answers 

were obtained by both methods. 

By determining the thickness of the pa-int film and its 

The serially sectioned samples or wax casts i n  Figure t 7  allowed 

the total area to be determined by the same method used for the pro- 

f i l e  area again represented the "Turbulence Factor". 

Curves of the profile area versus time (Figure 38), the total or  

contact area versus time (Figure 39), and the "Turbulence Factor" 

versus time (Figure 40) were plotted. 

The Wax Cast Analysis was primarily used t o  check the results 

from the Film Analysis and, after it was found that the results from 

both analyses were in essential agreement, it was not used further. 

C. Vibration Mixing Analysis 

Another method by which the mixing processes and phenomena were 
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studied is the Vibration Mixing Analysis. In this methud, the fluid 

particles are siaPllted by solid particles of various sizes, shapes, 

colors, densities, etc. These solid particles u& in various pro- 

portions and c d i g u r a t i m s  are nunmted m a vibration table ard 

shaken for certain lengths of the. Figure 41 shows the experimental 

ammgeaent simulating spi l l  mixing canfiguration. Three liquids are 

represented 'by different color marbles and are arranged in a desired 

configuration. Shaking the configuration for predetemined times, the 

marbles w i l l  diffuse into each other. Thus in this m e r  the mixing 

process sinulated here can be studied in steps. 

Figure 42 presents a number of the views represemting these steps. 

Any particular region can be studied in this manner by removing this 

volune and counting the particles of each of the constituents present. 

This gives the percentages of each one of these constituents, thus the 

degree of mixing in t h i s  region. 

Removal of saae of the particles fmm certain regims as prograsoned 

and governed by the fmdamental relationships of heat transfer can 

further account for evaporation losses. This takes into account boil- 

off as part of the mixing process. 

In this laacner a curve can be plotted for the fraction mixed as a 

function of time. The time scale is arbitrary since the amplitude 

and frequmcy of the shaking table have a pmnounced effect on the 

speed w i t h  which the mixing progresses. To find the absolute mixing 

time either an experiment with liquids cr theoretical calculations 

will give the time scale needed. This absolute time superimposed upon 

the curve gives the true mixing function - time relationship. 
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Figure 43 presents a mixing function curve representing the 

J-test series of the ‘-thur D. Little Spill Test Program6. 

It is interesting to note that all mixing experiments produced 

the sane characteristic shape of the mixing function curve, only the 

actual values and speed w i t h  which the process occurred were different. 

D. Thennocouple Grid Analysis 

The three methods for studying the mix- process, the Film 

-lysis, the W a x  Cast Analysis, and the Vibration Mixing Analysis are 

excellent methods for obtaining insight into the phenmena taking place 

&en different liquids mix. They are, however, simulation methods 

and are not readily applicable to actual explosive mixtures where 

detonation and explosion would, in most cases, destroy the records. 

The Thermoccmple Grid Analysis overcomes this difficulty and can, 

therefore, be considered the most powerful and best of the methods 

discussed in t h i s  paper. It is the best but also the most elaborate, 

most expensive (and the data reduction the most tedious) of the four 

methods. For explosive tests, it is, however, the only method which 

will give infomation -time zero of the failure up to and beyond 

the time of ignition. 

The heart of this method is a grid of thermocouple junctions spaced 

throughout the region under study. These can be placed inside the 

tanks of a missile and extend around it if fireball data are desired. 

A continuuus time record of the signals from the individual junctions 

is kept for the complete period of the processes under imrestigation. 

“hi; method, through its three-dimensional records of the camplete 
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time history, can provide a great amount of information w i t h  respcct to: 

1. The three-dimensional mixing front of 3 particular constituent 
2. The degree of mixing a t  a particular point 
3. The degree of turbulence a t  a particular point 

and, in explosive tests, in additim to the above: 

4.  The location of the point or points of ignition 
5 .  The time delay fmn initiation to mixing to ignition 
6. The propagation of the reaction fmnt 
7. The propagation of the shock front 
8. The separation of shock front and reaction front, etc. 
9. Other phenomena and events obtainable by detail data analysis 

The experimental awanganent and equipment for the Thennocouple 

Grid Analysis is the same as that for the Film Analysis and can readily 

be incorporated into static explosive test series. The m l y  addition 

necessary is a three-dimensional grid of fine thermocouple junctions 

giving good response characteristics. Full response times of less 

than 10 micro-seconds have been obtained in our laboratory. 

The signals from these thennocouple junctions can bc fcd to the 

recording q i p n e n t ,  which my be close by, in inert tests, or a t  some 

distance i n  explosive tests. 

The overall experimental arrangement for the mrk reported here 

is shown in Figure 44 .  The aperimento1 apparatus and the .ccording 

equipnent are shown. All the control experiments using this orrngement, 

i n  addition, made use of high-speed camera recordings of the m i x i n g  

phemmena so as to have a check and comparison betwccn the Film Analysis 

and the Thermocouple Grid Analysis. 

Figure 45 picturcs thermocouple grids which wcrc I I S ~  i n  rant of 
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these investigations. Our laboratory has the capability of monitoring 

over 40 individual junctions at present which can be extended to 65 

if needed. By high-speed periodic sampling through conmutation this 

capacity can be increased manyfold, bt the time continuity of the 

records has to be sacrificed. 

Figure 46 presents traces obtained from a mixing experiment. All 

twelve traces in this case correspond to junctions in a vertical plane 

at three different elevations w i t h  four junctions equally spaced in 

each one of these elevations and arranged in straight lines. 

Figure 46-A presents traces of the m i x i n g  of hot oil and water. 

Figure 46 -B presents traces of the m i x i n g  of LNz and kerosene. 

Figure47a presents the resulting mixing profile as determined by 

interpolation between the junctions of the thermocouple grid at time T . 
Figure47balso presents the resulting mixing profile of the same 

hot oil and water experiments as determined by the Film Analysis at the 

same time T . 
It can be seen that the results from both methods of analysis are 

essentially the same. More and closer spaced thermocouple junctions 

would give more points for drawing the mixing profile and would fix 

t h i s  surface with greater reliability. 

The degree of mixing at any time, T , around a particular junction 
can be determined frm the time history at this junction by writing 

the relationship for mass and energy balance at this junction incor- 

porating the laws of thermodynamics, fluid flow, and heat transfer. 

A Computer program to do this is of great help if a considerable number 

of junctions c.re involved. 
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Averaging the conditions a r o d  each of the individual junctions 

can then give the mixing function, the fraction mixed at any time T , 
Figure 48. 

The preceding discussion of the four methods which can be employed 

investigating the mixing phemnena of liquids to establish a m i x i n g  

fhction-time relationship shows the value of these methods, their 

relative merits, and singular advantages to do the job. 

The Film Analysis is relatively simple and easily carried out, but 

in its simplest form, the use of light requires transparent containers 

and rather transparent constituents. In its more sophisticated forms - 
using shorter wavelength radiation, such as X-ray, Gamna-ray or tracer 

methods - the equipent necessary becomes lpxch more canplex. 

The Wax Cast Analysis allows the checking of the results obtained 

by the Film Analysis by independently establishing the m i x i n g  profile, 

total or contact area, and turbulence factors. 

The Vibration Mixing Analysis provides a method by which, again as 

in the W a x  Cast Analysis, the mixing process can be stopped at any point 

in its developent and studied at leisure. 

The Thermocouple Grid Analysis, the most powerful of the four 

methods, can provide all the information of the a h  methods (except 

for stopping the mixing process at any point in its developnent) and, 

in addition, can be used in actual missile configuration explosive cx- 

periments . 
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In the manner described above these methods can provide information 

which is not available a t  the present time and, through this information, 

can give better insight into, and understanding of , the actual happenings 

during the mixing process and leading up to  the explosion of liquid 

propellant mixtures - information which is needed if  we ever hope t o  

control and guide these processes. 

Electrostatic Charg e and Voltage Generation (2) 

Mxch of this method was descrrbed in the section on Critical Mass 

and some of the supporting results were given a t  that time. 

Basically it was theoretically predicted when fluids mix that 

electrostatic charges and voltages are generated and these -*-. re then 

verified by actual measurements in the laboratory. 

To verify the results obtained by use of the Fluid Plug Model a 

simple e x p e r b t  was set up. Figure 49 schematically describes it. 

A glass cylkder was used and f i l led to a desired level with RP-1. 

Above the RP-1 w s  a partition with a hole in the center which could 

be opened by sliding out tw plastic sheets. The hole diameter was 

1/2 that of the glass cylinder. The space above the partition was 

filled with the desired quantity of LNz and when the hole was quickly 

opened the LN2 dropped into the W-I through the hole, simutating a 

fluid plug. 

In the RP-1 space were mounted two screen electrodes, one just 

above the RP-1 liquid surface and the other in this case 1.25 inches 

below the upper one. kads from the two screen electrodes tvere led 
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to an Electrometer and its output to  a Brush s t r ip  chart recorder. 

In this manner, the charge and voltage build-up as a function Q€ 

time could be determined for different coaibinations of liquids and for 

different quantities. 

The actual traces obtained look very much l ike  the theoretical 

traces of Figure 11. Again it does not seem to  make any difference 

:&ether the *.le quantity is used a l l  a t  once or in steps, providing 

i n  the la t ter  case leakage is prevented. 

F i rs t  single probes were tlsd uld only on occasion were charges 

and voltages observed, then double probes were used with s5nil.s 

results. The more probes were used the more often were readings ob- 

tained and finally w i t h  the use of screens which are really just multi- 

junction probles, readings were obtained every single time. It  was 

observed that the Screens had an averaging effect. I t  could be es- 

fablished a t  l w s t  that the charge and voltage generation is an integral 

part of the Eiving process of liquids and occurs whenever there is 

mixing of dielectric fluids . 
When the large quantities were allowed to  come together it s,emed 

that the mixing takes place in very rapidly repeated jmps so that the 

same voltage was reached as if the same quantities were mixed in dis- 

crete steps. Since the mixing occurs in such small  steps over and over 

again, the average value takes on much more meaning especially when 

applied to  large quantities. 

The manner o .king did not seem t30 critical since just pouring 

one campotlent into The other produced essentially the same results. 
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The reasan for this scents to be that the boiling action which provides 

considerable violence to the mixing process is the over-riding pheno- 

menon. If, however, amsiderably mixing energy is used, such as 

thepaxriugfranaheightof  lOfeet,thepriXingandthechargegener- 

ation and voltage generation occur lllEh more rapidly. 

It seaned, lmmrer, that the mixing ocrzllrred relatively amre 

rapidly than the charge and voltage U d - u p  when canpad  with the more 

gentle method of bringing the aqments  together. Figure S O  shows an 

actmal trace of voltage versus time for M o d -  W2 additions. 

h e  to the s a l 1  quantity of RP-1 and the rapid addition of 'N2 

the temperature difference betwen the conpnents decreased during this 

test showing the effect of less vapor generation in the later additions, 

resulting in deeper penetration of the fluid plug and therefom more 

voltage generation. 

The high speed film analysis indicated that the hulk of the bubbles 

was very unifom in size and very close to l/4 in. in diameter. There 

were larger and smaller ones but they were very few in  RHnber. 

%metimes voltages of apposite polarity are recorded since with 

the turbulence in the mixing region the charged layers can came in 

contact w i t h  either electrode, and each one can becane positive or 

negative w i t h  respect to the other. The actual amounts of voltage gen- 

erated and recoded did not in general vary too mch but on occasion 

a large jump was observed. 

The average voltage generated was four volts with electrode spacing 

optimum based upon many observations for 200 ml of LN2 . This voltage 



145 

4 
E 

4 
I e 

CIC 

\ 

.-( 

E 
0 
0 
hl 

Q 4 J  v c  



146 

was hilt up though the use of large quantities or small quantities 

in successioar to several hmdred volts durixg these experiments. Sume- 

times, hrt not very often, a single jmp of several hundred volts was 

obsemd with as l i t t le as 200 m l  of IN2. 

aae actual val- of charge5 and voltages geaerated increased with 

tlre cpnt i ty  of propeuants mixed. 

The thearyand the laboratory verificaticm resulted in the fornu- 

of the cr i t ical  Blllss which olas lation and prediction of the 

several years later further substantiated in actual field tests. 

Another inportant observation in these experilnents was that the 

ammt of clrarge axni voltage generated depemkd upon the energy which 

mused in mixing the cxIpmwS, the results crf this were presented 

earlier. 

B. Brpl osive Field Rqmmmt - s  

To deterrmne - how mixing of liquid rocket propellants canpares with 

the laboratory studies which hawe substantiated the theories, a rarmber 

of different experiments have been conducted bring out t h i s  canparisan. 

1. IplRlo Project 

25,000 lb. ILIJRP-1 Explosicm Bpa%mts 
L. 

To show and deintmstrate how the theory can predict the explosive 

yield for liquid rocket propellant explosions, two 25,000 lb. LO2/RP-1 

eqmiments were completely instnmmted by the University of Florida 

Group with themoccuple grids. The thenmcmples were installed inside 

the tank assemblies of the liauid propellant q l o s i o n  test series, 

plarmed and canducted with project PYRO a t  the Air Force Rocket 
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Propulsion Laboratory a t  Edwards Am Force Base, California. This 

instrumentation was t o  measure the phenomena following the initiation 

of failure. 

Because of the mode of failure selected by project PYRO, the 

region swept through by the star cutter had to be excluded from detailed 

analysis since the instrunentation in that region would have been des- 

troyed by the cutter (see Figure 51 ) before the events which were to  

bemleasuredocrurred. 

The overall p v s e  of this instrumentation vas to: 

1. Correlate the mixing phenmma of the true propellants 

with labratory mixing experiments using inert fluids for 

sirmlation. 

2. To substantiate experimentally parts or all of the "Fire- 

ball iiypothesis"l6 proposed earlier in  these studies. 

Specifically it was hoped t o  be able to  determine by this experi- 

mental procedure part or all of the following: 

After failure but before ignition: 

1. The three-dimensional mixing front, or bomdary of the mixing 
region 

2. The degree of mixing a t  a particular point 

3. The degree of turbulence a t  a particular point 

4. The t he  delays from initiation of failure to  start of mixing, 
and to  ignition 

5 .  The location of the point or points of ignition 

6. The propagation of the reaction front 

7. The propagation of the shock front 
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8. The separation of the shock frcmt and the reaction front 

9. Other phenmna and events obtainable by detailed data analysis 

Only in (2) and (3) above do the thermocouple response charac- 

teristics have to be considered since in all other cases only relative 

time differences are needed. 

Excellent data were obtained in both experiments. Advantage was, 

however, taken of knowledge obtained from the data ana1ysis of the first 

experiment, No. 278, to obtain the best results possible fmn the s e c d  

experiment, No. 282. The main jmprovements were the moving up of sane 

of the thennocouples higher in the tank and closer to the star cutter, 

or into the m i x i n g  region, since it was famid that the star cutter did 

not travel as far as was previously expected. The chart speed of the 

recording oscillographs was, in the second experiment, operated at four 

times the speed of the first experiment to increase the resolution 

capabilities. 

The instrumentation to accomplish the above consisted of: 

1. Very fine thermocw,iles inside the tank 

2. A reference junction box in an underground steel box near 
gmmd zero 

3. High speed recording oscillographs 

The sensing elements inside the tank (Figure 52) consisted of 

37 copper-constantan thermocouples, No. 36 gage, shellacked and Teflon- 

coated. These thennocouples were made so that no excess material was 

present at the junction and the whole thermocouple looked like a con- 

tinuous wire with no visible variation at the junction (Figure 53). 
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A small plastic tube was slipped over the wires to about 1/4 inch 

behind the junction and f i l led with epoxy, both to support the junction 

preventing relative motion between the wires, and to provide a mans 

for attaching the themcouple tothe support wires inside the tank. 

The thennocouples were located in the tank (Figure 54) so as t o  

give an optimum pattern of the data. They indicated the arrival of 

events a t  their location and changes occurring a t  or in  their  region. 

The leads of the 37 thermocouples (74 individual wires) were 

guided along the support wires and loosely tied to  them about every 8 

k h e s  (Figure 55). This gave the needed support to the fine wires 

ard at the same time allowed them t o  give, in  case they were hit by 

some small fragments from the shattered glass diaphrap. 

The lads were then fed by m e a n s  of two Cannon plugs through the 

tank w a l l ,  and on the outside by copper-constantan thermocouple cables 

to  the hot reference junctions, located in an underground steel k. 

From there the signals prociuced by the thermocouples were carried by 

capper cables to three CEC recording oscillographs. These recorders 

were operating a t  a chart speed of 40 in./sec for experiment 278 and 

a t  160 in./sec for experiment 282. 

The data obtained by the above instrumentation and methods are 

shown i n  Figure 56 for a few thermocouples; Figure 56A givbg traces 

from initiation of failure to  sane time af ter  detonation; Figure 56B 

showing only the time increment during which mixing starts and indi- 

cating the passage of the reaction and shock fronts. 

Analysis of the data from these two liquid propellant explosion 
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experiments allow the following statements to  be made: 

Experiments No. 278 and 282 were amazingly similar i n  propellant 

mixing, ignition and explosion characteristics. 

Practically a l l  the mixing up to  the time of ignition was confined 

to  the volume -t through by the star cutter. This volume as 

dettrmined from the data was about 12 percent of the total, based 

upon the RP, giving an up.' 

the theoretical maximum or somewhat less than 15 percent 'I" 

equivalent. 

The actual temperatures as recorded by the traces allow the calcu- 

lation of the degrc! of mixing by means of a number of simultaneous 

equations which can most conveniently be solved by comprter. 

The degree of turbulence a t  a particular point (the poiiits where the 

thermocouple junctions were located) can be detennined from the 

fluctuations and fine structure of the traces in  terms of frequency 

and amplitude. 

There was only one point of ignition i n  each of the experiments and 

this point was located in each case (Figure 57A and 57B). 

The time delays between various events can be determined from the 

traces. If projected c 1 a screen these times can be read to  a 

1/1000 of a millisecond. The time delay fran failure or firing of 

of the ram to  ignition in experinent 278 was 543 milliseconds and 

in  experiment 282 it was 580 milliseconds (read t o  the closest 

millisecond. Greater accuracy is available if desired). 

yield estimate of about 12 percent of 

The accurate reading of these delay times also allows the  exact 
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determination of the film speeds of the various cameras used. The 

inportance of t h i c  is brought out, since none of the cameras operate 

a t  their nomindl speeds and vary frau one time to  the next. For 

instance, tht; two 4000 fps cameras during experiment 282 were oper- 

ating actually a t  2620 fps and 3750 fps respectively. 

7. The propagation velocities of the reaction front and shock front 

could be determined and the analysis gives the results shown i n  

Figure 58. 

8. By careful s M y  of the fine structure of the traces the shock 

f m t  propgation characteristics can be determined. 

9. Frau ( 7 ,  {8) abnve it can be detennined where the tm fronts 

travel together zn<l where and when the shock front leaves the re- 

action front behind. 

10. W i u  the 3elay times exactly determined and the fih speeds hmm,  

then the volume-time Pr volume-distance characteristics of 

and szlock fm.m can be detenuirled (Figure 59) .  

11. The fine structure of the traces reveals that some of the glass 

fragments from the shattered diaphrap h i t  sane of the thermocouples 

in  the uppennost of the four layers but did not damage them, so they 

recorded this ani later events. '?le glass fragments did not per8- 

e+rate rlurira their high energy state to the lower layers since the 

attenuation i n  the liquid was too grest. 

12. From the fine structure of the traces, a t  least t!ree typical shapes 

are ot .enred, Figure 60. The first is caused by the arrival c4 the 

U: 

m C -  

-"Cr3lod by thc reaction d shock fronts; the second is caused 



158 I 

L -Shock Wave 

Beact i o n  Front ICN 

t I I 
2 3 4 

Time in Milliseconds 

Figure 58 Velocity versus Time 
of Shock Wave and Reaction 
Front (25,000 Ib LO /RP-1 
Bxplosion Experiment] 



70 P 
1 
0 

u d 

0 Experiment No. 278 

Experiment No. 282 

O I  2 4 6 8 10 12 

Time after Ignition, seconds 

Fig. 59 
Finball ond Combustion P d p c t s  Cloud Volume as a Function of Tim. 



160 

Y 
0 
r( 
0 a 
C 
0 
4 
Y 
4 
8 
Y 
n 

8 
k 

' 9 1  

9) 
V 
U 
3 
4J m 
.r( 

I 



by the reaction and shock fronts arriving simultarmusly a t  the 

thermocouple, and the third is caused by the shock front arriving 

first closely followed by the reaction front. 

'I& above statements are only a few of the many which could be 

made in extracting information fram these experiments. 

Sinulating the configuration and the mode of failure of the 25,000 

lb. L O P  experiments in the laboratory pro&ced the curve sham in 

Figure 61. It again shows the typical quick rise and then the tm 

typical hamps for this type of failure. Naturally in the actual case 

the curve after the ignition point did not exist. 

The ignition point 'was determined by the critical mass technique 

which indicated that vdm 2900 lb. of the propellants are mixed, igniticm 

is a certainty. T h s  both the c p n t i t y  and the ignition time were pin- 

pointed and then plotted on the mixing curve. Again perfect agreement 

is formd between the experiments in the laboratory and the results ob- 

tained in the actual explosive field tests. 

Taking 2900 lb. and dividing it by 25,000 lb. or the total  quantity 

of propellants present gives an indication or  prediction of explosive 

yield of 11.6%. This value can be canpared to the valae which was 

measured, namely 12%. 

200 11;. Cold Flw Expe rimat 

To actually compare the mixing characteristics of the inert fluids 

used in the laboratory for simulation and the explosive liwit rocket 

propellants a 200 lb .  Lo2/RP expi-iment was completely instrumented in 
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the same manner as the 25,000 lb. experiments. 

An explosion was not expected in this case and so the mixing 

process could be followed for a much longer period, as a matter of fact 

until the mixing actually stopped due to sludge formation. 

Again the cutter volume had to be excluded from the analysis but 

the results =re in excellent agreement with the curves obtained for 

the simulation, Figure 62. 

'W mixture was then set off by an explosive bolt and the yield 

actually measured was the same as predicted. 

The S-IV B L o ) /  Brplosion Experma - t  

To see how a prediction based on the sinahtion of the S-IV B 

explosion experiment would campare w i t h  the actual measurments, the 

mixing function was determined for the above configuration and the 

corresponding mode of failure, Figure 63. 

The ignition time was determined again as in the previous predic- 

tions bry the critical mass method and thus was plotted on the mjxing 

function curve which is the yield curve in the early stages. 

Fram the simulation it was shown that the mixing occurred with two 

distinct larger humps but which even at their peak values are relatively 

low and then stabilizes an almost constant value. This is due to the 

evaporatioi. occurring essentially at the same rate as new propellants 

are added to the m i x t u r e .  

The explosion occurred again very early thus not allowing large 

values of yield to be obtained. 

This self-limiting phmenon is fortunate since large explosions 

with liquid rocket propellants are almost impossible to obtain. 
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The ADL Spill Fxplosion Expe riments 

The work done w i t h  liquid rocket propellants by Arthur D. Little, 
6 Inc. was to determine the explosive yield obtainable with liquid 

rocket propellants. The experiments were designed to give very good 

and rapid mixing so as to obtain large yielch. 

When -11 quantities of propellants were used the ignition time 

could be controlled and was varied. 

produced small explosive yields, and late ignition produced small 

explosive yields. 

It ms observed tiat early ignition 

In between a maximum value was observed. 

When large quantities were used in the experiments early ignition 

always occurred due to self-ignition and the yields obtained could not 

be contrclled. 

Again the aking function was obtained in our laboratory and with 

the critical mass method, considering the higher mixing energy available, 

and the ignition time was determined. This time could also be checked 

against the measured value, Figure 64. 

Again excellent agreement between the predictions and the actually 

measured values could be observed. 

Electrostatic Charge Generation and Auto-Ignition Results of Liquid 

Rocket Propellant Experiments 

It has been observed that when large quantities of liquid fuels 

iz-2 zidizers are brought together, eivher during experiments or 

accidentally, liquid propellant explosions result. 

Many different phenomena can trigger these explosions such as 

flames, sparks produced by striking or breaking metal, hot materials or 
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hot spots produced by slow chemical reactims of fuel and oxidizer, 

the breaking of crystals which are fonned when one of the liquid corn- 

ponents freezes the other and which are broken mechanically or by 

thennal stresses, or by static electricity which is the result of 

internal friction and which may produce a spark discharge. 

Many more possibilities could be cited but these additional sources 

do not change the basic picture. 

'Ilrus if there is contact or mixing of a liquid fuel wich a liquid 

oxidizer, ignition is possible if an ignition source is available. If 

not, the m i x i n g  process may proceed with more and more of the fuel and 

oxidizer m i x i n g  until an ignition source appears either through external 

or internal action. 
75,104,116,118 as The Critical Mass concept was developed earlier 

also shown in detail in section I-C. Figure 65. 

tation and measurement of the critical parameters involved in the real 

explosive Liquid Rocket Propellant canbinations. 

For the actual explosive experiments which k .* planned and then 

carried out at the Kennedy Space Center, the experimental procedure 

had 50 be modified as well as the equipment. Since the experiments 

had the potential of an explosion (although none or only a very fcw 

were expected w i t h  this quantity) precautions requiring remote oper- 

ation had to be taken. 
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A test set-up was designed, consisting essentially of two cylin- 

drical containers, a larger one on the bottom and a smaller one on top. 

The exact dimensions were, Lower Tank: 1 2  3/4" O.D.X. 1 2  3/4" high, 

Upper Tank: 8 3/4" O.D.X. 8 high. 

The top tank was hinged so it could t ip  and yur its contents into 

Both tanks had lids and were thermally the lower tank. See Figure 66. 

. insulated so as to reduce the evaporation losses of the cryogenic 

liquids used as fuels and oxidizers. 

Temperature probes, consisting of stainless s3el  sheathed t h e m -  

maples, two in  each of t!!e tanks, were used; these mitored the liquid 

levels in the tanks so that proper quantities were in  each tank a t  the 

'time an experiment was started. 

The lower tank was fi t ted bith tm copper screens, approximately 

one inch apart, spaced so that they would be surrounded by the mixing 

region during the experiment. Thes: screens formed the electrodes to 

measure the charges and voltages generated due to 'he mixing proc-. esses . 
The signals from the probes ard screens were transmitxed through am- 

plifiers to the instmentiition van where they were recorded on st r ip  

charts and tape. figure 67 shows the screens installed i n  the lower 

; t?A. 

The test  set-up allowel expdmentatior, with my one of the pro- 

pella.ts in either tank. 

The exGerimenta1 prmxiure, dawribed in greater detail i n  the 

appropriate section, was to f i l l  each tank t o  the desired Jcvcl, then 

by remote operation: 
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1. Lift the lid of the l a m  tank 

2. pull the safety pin on the upper tank 

3. lhmp theupper tank 

Records of the probe temperatures and screen voltages were made 

during the above procedure. 

The 60 Eolmd E@osive Bcper iments 

The test set-up for the sixty pound experiments was essentially 

the same as for the six pound experiments except that the tanks needed 

were considerably larger. The dimensions tere, Imer Tank: 27 1/4" O.D. x 

27 1/4" high, Upper Tank: 18 1/2" O.D. x 18 1/2" high. 

Figure 68 gives the experimental arrangement for this series of 

experiments with the instrumentation part being the same as for the 

smaller tests except that the stainless steel probes which had proved 

to be erratic and slow in response were re?laced with exposed small 

thenm>couples and the screens were larger in diameter. 

The actual operation asxi running of the experiments was slower 

since larger quantities of cryogenic fuels and oxidizers were involved 

requiring longer chill-down and filling times as well as longer warm-up 

times after the experiments were corrctucted. 

The 240 Pound Explosiwe Experiments 

While no actual explosions were expected w i t h  the six pound ex- 

periments, maybe one or two with the 60 pound experiments (although 

none occurred for the number of experiments carried out), about one 

out of ten experiments with the 240 pound quantities was expected to 

produce an explosion. 
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The experimental set-up was essentially the same. See Figure 69. 

The tank sizes were, h e r  Tank: 43 1/11" O.D. x 43 1/4" high, Upper 

Tank: 30 1/4" C.D. x 30 1/4" high. The exposed thermocouple type probes 

used in the 60 lb. test had not always been able to distinguish be- 

tween the vapor and the liquid; therefore, these were replaced with 

heated themoamples. These would remain cool in the liquid but would 

heat up rapidly in vapor where the heat gain was considerably larger 

than heat loss. Also the times for chilling-down, fi l l ing,  stabilizing, 

wing, and then warm-up after each experiment were considerably longer. 

Fluidic Oscillator Gas Sensors 

As an additional experiment not directly connected with the mea- 

surement of the electrostatic charge and voltage generation, fluidic 

oscillators, developed under a separate phase of this contract =re 

used to monitor the 3 cloud produced by the experiments. 

Figure 70 shows one of the earlier designs of this very simple 

device which can instantaneously detect a change in the density of a 

gas going through it, indicating the concentration of another gas. 

The device is simple, easy to make, and inexpensive. A transistor 

radio earphone can be used as the transducer to change the frequency 

impulses from the oscillator into an electrical signal which can be 

heard, displayed on an oscilloscope and/or recorded on tape. 

The oscillator frequency produced by the gas flowing through the 

device by applyirga vacuum indicates the gas mixture and its concentra- 

tion. A separate report is being written on this part of the wrk. 
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hcperinmtal Pmcedme 

General: The experimental procedure was designed to  allow the 

f i l l h g  of the two tanks of the experimental set-up to  the required 

liquid levels and then allow the dunping of one of the canponents into 

the other with the resulting voltage and charge generation being measured. 

To accanplish this a test procedure had to  be written since many 

people fnrn different support groups were involved a t  Kennedy Space 

Center; this procedure had to  be agreea upon and approved by everyone 

concerned. 

Evaporation or Boil-Off Expe riments 

The first step in  the procedure was to  determine the heat losses 

fmn the two tanks so that the filling and holding procedure and timing 

could be worked out. 

'Iheoretical calculations were made on the evaporation rates of the 

cryogenic camponents and they were experimentally verified. The probes, 

two in  each tank were set a certain distance apart and then the tanks 

were f i l led to the upper probe and the time determined for the liquid 

level to drop to  the lower probe. 

This was done for LN2, LOz, and U12 for each of the tanks in  the 

6, 60, and 240 pound experimental configurations. 

Actually these boil-off experiments were carried out a t  the 

beginning of each of the series involving different quantities. 

Charge Generation and Auto-Ignition Fxpe riments 

On the morning of each tes t  day the calibration of the instmen- 

tation was verified and the equipment was checked to see that it was 

recording properly. 
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1. to open the lower tank l id  

2. to pull the safety pin of the upper tank 

3. t o  dunp the upper tank 

The high speed camera and the documentary camem wre started 

during the countdown. The recording instrumentation which was TU- 

all  through the fi l l ing operation a t  low speed was switched to high 

.speed k i n g  the countdown to  produce m a x h  reablution for the &ta 

taken during the actual experiments. Figure 71. 

After campletion of the test it was necessary to  wait until the 

cryogenics vaporized before one could safely approach the test equip- 

ment, check it over, and ready it for  the next experiment. 

This procedure was followed in each case for 211 the charge and 

volkge generation auto-ignition experiments. 

In a l l  cases the Lo /W2 experiments were carried aut f i r s t  since 
2 

both the ID2 and the M2 vaporized without leaving traces of their 

presence and no cleaning operation was necessary. When RE'-1 was used 

sane of it froze and the waiting period until a-1 the LOz vaporized 

and Rp-1 gel melted was considerably longer. I t  also was necessary to 

remove any W-1 which splashed into the upper tank which was to be 

fi l led w i t h  M2 for the next test. 

Data and Results 

In this section .e data and the results of the various experi- 

ments will be briefly reported and the significance and deeper meaning 

of these results w i l l  be discussed in  the next section. 
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The documentary and high speed remote controlled cameras were 

loaded and readied for the experiments. 

With these tasks canpleted the chill-down of the tanks was 

started. LN2 was used f i r s t  to conserve ID2 and LH2. The tanks =;:e 

both partially filled with LN2 a d  this IN2 then allowed to vaporize; 

this pre-cooled the equipment for the experiments. 

Regardless of whether t2.e LH2 was to be in  the upper or lower 

tank for the particular experiment th? W2 flow was started and the 

liquid level monitored. I t  took considerable time before the probes 

showed liquid levels. The lower probe was set a t  the level required 

for the experiment and the upper probe a t  the level to  which the tank 

had t o  be fi l led to offset evaporation losses and have the correct 

quantity of liquid in  the tank a t  the time of ckrmping. 

When the liquid level reached the upper probe the signal was given 

to terminate flow; then the IF, tanker truck was sh t  off, disconnected 

and driven away. This operation took from twu to three minutes. 

When the H2 tanker had cleared the hazard zone the signal was 

given by the safety director t o  s ta r t  the LO2 flow into the second 

tank. Again the liquid levels were mnitored and this tank was f i l led 

to ' the upper probe and held a t  this level until the relative timing 

between the two tank levels was right so that with the proper count- 

down the liquid levels i n  both tanks were a t  the correct level a t  the 

moment of dmp. 

A t  the cgmnmd %nnp", three control cables were pulled in  se- 

quence : 
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Evaporation and Boil-off Experiments were necessary to predict 

the proper timing of the experiments. Evaporation losses OCP; - 1  in  

both tanks when fi l led with cryogenics; safety considerati requ~ P.* .  

these tanks to be f i l led sequentially. For this reason, tileoretical 

calculations were made as to the rate at  which the liquid levels 

dropped in the tanks and were then verified by experiment. 

The results obtained were as follows: 

Six Pound Emeriments 

60 Pound Expe riments 

240 Pound Exneriments 

Calculated Rates 
Upper Tank Lower Tank 

0.131 i n / m i n  0.11 in/min 

0.08 0.067 

1.05 1.00 

0.113 

0.07 

.86 

0.089 

0.055 

0.72 

IN2 0.084 

0.053 

0.67 

0.08 

0.05 

0.06 

Three different types of probes were used during the experiments. 

Each successive type was an improvement. Excellent agreement was 

shown between the experimentation and calculated values reported here. 
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Charge Generation and Auto-Ignition Experiments - 
The objective of this series of tests was to detennine if electro- 

static charges are generated an6 if so to find their functional 

relationship to other parameters. An important parameter involved in 

these experiments is the weight or mass of the propellants involved. 

Six Pound Ekperiments 

Figure 72 shows the actual traces fran a typical experiment. 

Recorded on the graph are the upper and lower probe readings in each 

of the tanks and the generated voltage. Table I1 lists all the 

WZ/I€iz experiments. It should be noted that the actual voltage gen- 

erated exceeded the range of the instrumentation in the first five 

experiments. In the first test the range was - + 100 volts, for the 

next four - + 1000 volts and for the remaining experiments - + 10,000 volts. 

For the Loz/RP-l experiments the range was set at - + 10,000 

and after the first eight experiments changed to - + 1,000 volts to 

obtain better resolution. Table I11 presents the Mz/RP-l results. 

60 Pound Experiments 

Figure 73 presents the actual traces of a typical experiment, again 

showing the temperature traces of the liquid level probes in both the 

upper and the lower tanks and the voltage generation trace indicating 

the 9pike'' voltage due to the mixing. Table IV presents the results 

for the LOz/'Hz experiments in which the Loz was poured into the LHz. 

The voltage range was set at + 20,000 volts. Table V presents the 

results for thc LOz/RP-l experiments with the voltage range set at 

- + 1000 volts. The voltage range was then changed to - + 10,000 volts 
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Voltage Data from S i x  PMUrd Id2/+ Experiments 
(I& is Poured into U p )  

No . 
1 

2 

3 

- 

4 

5 

6 

7 

8 

9 

10 

11 

Date Screen DiametepIn. Voltage - Volts - 
1/12/72 11 + 40 

> +loo 
1/13/72 > +lo00 

> +loo0 
+ 350 

> +lo00 

i4800 

+2800 

+1600 

-00 

+2000 

1/14/72 
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No. 

1 
- 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

TABLE 111 

Voltage Data from 6 lb. U)9 -- Rp-1 Experiments 
( I 4  is poured into RP-1) 

Date Screen Diameter-In. Voltage - Volts - 
11 14/72 11 +400 

+ 80 

MOO 

+ 80 

-350 

- 140 
- 350 

1/17/72 

1/ 18/72 

-300 

- 240 
- 500 
- 720 
- 760 
- 120 
-400 

- 40 
- 200 
- 700 
- 680 



No 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1 5  

16 

1 7  

- 

Voltage Data from 60 Lb. W9/LH7 Experiments 
(LO2 I s  poured into LH2) 

211 

212 

Date Screen Dia. - i n .  Voltage--volts - 
1/27 25 +1200 

1/28 +3200 

+ 800 

+ 800 

+1600 

+1600 

+ 80 

-t 400 

+’ 600 

2/3 

2 14 

+1100 

+2 800 

+1620 

+ 200 

+1300 

- 500 

+1000 

- 600 
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TABLE V 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

- 

No. - 

Voltage Data from 60 lb. LO,/RP-l Experiments 
(LO2 is poured into RP-1) 

Screen Dia---in. Voltage- -volt 8 Date - 
2/11/72 25 - 80 

-400 

- 200 
- 80 
- 160 
- 390 
-380 

-255 

TABLE VI 

Voltage data from 60 lb. LHq/LOq Experiments 
(LH2 is poured into L02) 

Date Screen Die. - - in. Vo 1 t age- - vo 1 t s - 

2/15/72 25 - 1000 
- 1000 
- 1000 
- 500 

- 500 
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for the W#L02 experiments, Table VI. In this last set of experiments 

the U$ was poured into the LO2 in contrast to the first series of ex- 

periments w i t h  60 pounds of propellants where the IA12 was poured into 

the %* 
The 240 Pound Exper iments 

In these experiments, the ones with the largest quantities of 

propellants used, the LH2 was pcsured into the LO2 in all  but the last 

two tests. While in those two the LO2 was poured into the LH2. 

Figure 74 presents the traces of a typical experiment and Figure 

75 the traces of the last experiment in this series, carried out the 

mOrning of Mrch 2, 1972, which resulted in auto-ignition and the 

predicted explosion. 

Table VI1 and Table VI11 give all the data for the 240 pound ex- 

periments with the voltage range set at + 10,000 volts for the first 

day and at - + 5,000 volts for the remainder of the experiments. Since 

this series tenninated with the explosion, no further runs could be 

d e  at t h i s  time and the Lo2/RP-1 experiments were postponed. 

Discussion 

The plrpose of the Mz/Mz and L02/RP-l experiments was to verify 

the Critical MEES Hypothesis which is based upon an ignition source 

inherent in the mixing process or, in other words, one which will 

always be present whenever liquid propellants are mixed. 

Among the many possible ignition sources, electrostatic charge 

generation w i t h  attendant measurable voltages is always present. This 

was shown in the laboratory with inert compomnts such as W2 and RP-1 
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Fig. 74 Typical  Chart Traces for a 240 Pound Test 
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Fig. 75 Chart Traces for the 240 Pouiid Test Explosion 
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e 

3 

4 

5. 

6. 

7' 

8 

b a a  Screen Dia. - in. vo 1 t 8  age- - v o l t  - 
212u72 40 + 400 

2l'2WE2 + 250 

+ 600 

- 200 

- 300 

- 300 

> - 1700 

> -1300 

2/29 

311 

- Screen Dia. - in. Voltage--volts 

4 B +1000 
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and others. The question, however, remined whether this would be 

true with the actual propellants used in these tests. A l l  theory 

indicated that there should be the same basic behavior. The voltage 

and charge generated were predicted from the physical constants of 

the constituents and the formulation of a physical model, the "Fluid 

.Plug Model", which lends itself  to  mathematical treatment 4,30,44,83,104,116 . 
Basically this is t!! concept that one fltlid fa l l s  into the other 

like a plug and the heat transfer between them w i l l  vaporize the other 

,proportional to the contact surface area. The vapor formed makes the 

fluid plug bob or oscillate giving it a motion similar t o  that observed 

in  the laboratory with inert systems. 

Then electrical analogy was used to  transform the mechanical system 

into an electrical system. This allowed the determination of elec- 

trical  properties such as voltages, charges, etc. The mathematical 

treatment involves basic heat transfer equations and vibration rela- 

tionships coupled w i t h  the mechanical to  electrical analogy. 

The motion of one fluid layer across the other produced electric 

double layers of rather high voltages and since the constituents were 

good dielectrics these voltages built up until discharge occurred across 

one of the many bubbles formed in the mixing and boiling. 

High speed photography of glass contained inert systems showed the 

size of the great majority of bubbles to be about 1/11 inch in diameter; 

from this the necessary charge to produce discharge and consequent 

ignition was detedned.  

The theoretical wrk and the inert laboratory experiments were 
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in excellent agreement and were reported in part in the "Prediction 

of Explosive Yield and Other Characteristics of Liquid Racket Pro- 

pellants" 75*104 by Farber, et. al. and in more detail in Yritical 

Mass (Hypothesis and Verification) of Liqyid Rocket Propellants8t116 

by E. A. Farber. 

"he tests described in this report were planned, coordinated, and 

executed at the K e ~ e d y  Space Center to determine how closely the 

previous theoretical and laboratory work predicted the actual behavior 

of the real potentially sxplosive rocket propellants. 

The most important relationship predicted both by theory and 

laboratory experiment was that there exists a limit to the amounts of 

liquid propellants which might be mixed without an explosion. Thus 

there is an upper limit to the size of explosion which can be prodwed 

regardless of the actual quantities of pmpellants present. The pro- 

pellants not taking part in the explosion may contribute to the sub- 

sequent fire. 

To show t h i s  relationship between charge generation and mass, 

tests were planned with quantities of 6, 60, and 240 pounds of propel- 

lants and if necessary w i t h  5,000 and 25,000 pounds. 

The Six Pound Experiments 

These tests were the first ones in the series. Because of the 

small size they were easiest to handle, and the explosion probability 

was less. None or possibly only one explosion was expected for the 

nwnber of experiments planned, 

The voltage instrumentation range vas set at - + 100 volts since 



195 

emugh sensitivity was desired to measure any voltage and charge 

generated even though it was expected that if all parameters were 

properly controlled the generated charge and voltage would by far 

exceed th is  value. 

The first two experiments showed that in both cases the pen of 

tthe brush recorder rather violently reached the end of its travel 

and stayed them. 

The range was then changed by one order of luagnihrde and the 

following day the next three experiments again each produced enough 

voltage to 'peg the pen", indicating that more than - + 1,000 volts 

were generated in each case. 

'&e range was again increased by one order of magnitude and this 

time the actual readings were obtained with the maximum reaching 

6,400 volts. F m  the size of the screens and their spacings the 

charges which were generated could be calculated. 

After these experiments with L02/M2 which produced rather high 

voltages in every test (thus showing that voltages and charges are 

produced in every case of n i x i n g  of these fluids) the experiments 

were repeated with m.JRP-1. 

Again voltages and charges were generated in each case, 

actual values were smaller than in the L02/IHz case since the energy 

available for the mixing process was smaller. 

Tables I1 and I11 give the data for the six pound series of 

acperimmts 

I t  was felt  that the results fmm the~e experiments verified the 
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predictions and thus no more tests were required and the program 

moved on to the 60 pound experiments. 

~ 6 0 P 0 ~ n d E ~ p e  riments 

Withathe experience gained from the f i r s t  series of experiments 

*&e 60 pound test equipent was set up and the test procedure repeated 

, with LO2 being poured into M2. New values were worked wt for evap- 

oration rates and the corresponding liquid lew’ 'rap rates. New 

fi l l ing times and proper probe settings were c‘ :hd. 

The eocplosive likelihood in  +bse experime~.;~ also was higher 

w i t h  the expectation of possibility of one or two of the experiments 

auto-igniting. 

The probes were set a t  levels Mch allowed proper timing to 

carry out the necessary change-overs i n  between the f i l l ing of LH2 

and Lo2 tanks. The voltage range was left a t  - + 2C,OOO volts to save 

tiroe and not require recalibration, and the change to a smaller range 

postpond. 

A few preliminary experiments were necessary until the timing 

had been worked aut satisfactorily and then the experiments were 

carried Out just as were the smaller ones with the voltages recorcsd 

and the charges calculated for the larger screens. Since the screen 

areas in  these e x p e r h t s  we= 5.2 times as large, equal voltage 

generation indicates a charge 5.2 times as large. As shown by quab 

tions (go), (91), (92), and (93). 

Given Q m, 
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Q - charge-coulombs 

C = capacitance-farads 

V - voltage-volts 
then for the same voltage generated V, we have by division: 

‘60 
Or Q 6 0 - c g  Q6 T V  T %O = ‘60’ ‘60 

Qbo = Charge developed in 60 pound Experiment. 

Q6 Charge developed 6 paund mrilUeIlt. 

CG0 = Screen capacitance in 60 pound Experiment 

C6 Screen capacitance in 6 pound Fkperhtent. 

Also 

-e? 

KA c - 0.224 (n-1) 

A - screen mea - in’ 
D - screen separation - in (umstant) 
n = nuxnber of semens (constant) 

X dielectric canstant (3.3) 

? - capacitance - farads 

then substitute into (91) and simplify; (due to experimental similarity 

the I(, d, and n values are equal and cancel) 



therefme Qao = 5.2 Qs (fof the same generated mltage). 

A series of these experiments was carried out. Voltage ard 

charges were again generated in each case with the larger scfeen having 

mare of an averaging effect. 

When it was amsidered that enoughof these tests had been am- 

ducted the next set of experilams ilnfolving mz being dueped into 
RP-1 -re started. Ihe probes Wre Changd to respaad to the prwpe!r 

propellant t2iqeratures and the Voltage ills-tation range ms set 

at - + 1,000 volts. The voltages generatd and the - charges 

W e r e ~ s m a l l e r t h a n t h o s e ~ W i t h I Q z a n d ~ .  Thiswasin 

perfect agrement with the predictiaas and after it hed been established 

that the voltage and charge generation was present in each of the aises 

the ldt set of experiments was initiated. 

These aqlerhents involved again Loz and 'H2 lnlt this time the 

IHz was poured into the LOz. The voltage range was set at - + 10,000 

volts. No significant difference was f d  in the beha\rier of the first 

and last series except that the voltages and charges generated with 

lQz clwnped into the LH2 might have gc?nerated slightly higher voltages 

on the average. This can he explained by the greater energy supplied 

to the mixing process by dmping the heavier IO2 into the lighter Ill2. 

No explosim o c d  in this series of e x p r b m t s ,  although 

some oL the experiments, based upon the theory, came close to auto- 

ignition. 

The actual results are reported for these experiments in 
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chbining bquatiegls (92) d (94) yields 

Therefore 
= 13.2 Q6 (for the same generated voltage) 4240 

In these experiments it was expected that an explosion would 

occur; from experimental history it was predicted that om out of ten 
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experiments with Lo2/’H2 shmld auto-ignite. 

Jkcause of the chill down times and then the filling times it 

wasdecidedtostartwiththe IH2 intheuppertankanithe Lo2 

in the lower tank. 

Again the experiments were carried out in the same manner as 

the earlier oms. The timing jxupmd with the number of experiments 

carried out and the last three experiments of the first day of this 

series turaed out to be the best oms. I t  is believed that the first 

oi these came very close to auto-ignition. 

The last experiment of that day was cairied aut be reversing the 

propellants, having the ID2 in the top tank and the W2 in the lower 

tank. 

The first experiment of the next day, carried out in exactly the 

saaae manner as the others, actually pro<luced auto-ignition and the 

coslse~uent explosion. These data are shnwn in Tables VI1 and VIII. 

The 240 Pcnmd Auto-Ignition 

The tenth experiment of the 240 pound series was carried aut the 

way as all the others. Since it was the first experiment of the 

the tanks were first chilled down with LN2 to conserve LO2 and LH2. 

the lower tank was filled with Wz t o  the desired level and the IH2 

tanker truck was disconnected and driven away. 

The upper tank was filled with In, to  the required level. Then 

a short waiting period reduced both tank levels to the exact levels 

desired. A t  this time the LO2 frcan the upper tank was dwnpeci into the 

lower one containing the Wz. 
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The experiment looked just l i k e  all the :$.hers with a vapor 

Claud appearing fmaa the mixing process. It  grew as the. others a!d 

up to  this point the test proceeded just the same as before. 

Then Dr. Farber observed a small red glow looking like reflection 

maring near the apening of the lower tank and changing to  ye1L.i~ 

and then white as it grew. I t  then rapidly developed into the deto- 

nation and eJeplosion w i t h  shock wave, fireball, etc. of ii typical liquid 

rocket propellant explosion. 

Figure 76 shows six frames taken during this test by the high 

speed movie camera which was running a t  1600 frames/sec. Frames 2 

through 6 were taken sequentially prior t o  and dur- the explosion. 

The developtent of the vapor cloud and the explosion can be seen clearly. 

The prediction of an auto-ignition with these quantities or pro- 

pellants was satisfied and the prediction that one of ten would produce 

an explosion (a rough estimate) was exactly met, probably more by 

coincidence than by design. This again indicates that mch can be pre- 

dicted f m  L\eoly. 

Figure 77 shows a plot of the generated charge ratio (to bring all 

measuranents to  the same basis) versus the quantity of propellants 

imrolvd. 

In this plot the lower bound of all the charges generated can be 

extrapolated to  produce auto-ignition with a mass of about 2300 pourads, 

a value predicted about four years earlier 4p83,104.  hen that value 

of charge producing auto-ignition is reached by a smaller mass it w i l l  

explode. 
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it should be asr(phasized that the theory d its verifi- 

cation by these expe-ts predicts that auto-ignition kaws a 

certainty dim the masses becane large etamu& reachiqg the Critical 

Mass. Below the critical mass quantities tha probability of an ex- 

plo~ian chre to mto-wth shrruld - with -ing ~IEBISS, OT 

in other Blords the smaller the lliass the less likely is an auto-ignition. 

Shce th pmbability of mto-ignitim is not Z ~ Y O ,  

masses smaller than the critical a a q  explosions with these quantities 

CBn and dQ actually OCQIT. 

for 

h %Set -tS thrssg 1Lo autO-@itiCN& W i b J  the six 

or 60 poundmasses but me cart of ten with the 240 pound masses. 

This explosicm in the 240 lb. series verified the hypothesis of 

mto-ignition from self generated charges and voltages in the mixing 

of liquid gxropellants. The voltage SpilDe IlKmurd \98s mor€! tRan q l e  

to producg the electric d i e n e  which triggered the? qlosion, and 

it exceeded the predicted value needed for auto-ignition. S i n w  the 

~ l o s i o n  was considered the successful conclrlsion t o  this test series, 

these earpglritnents were terminated. 

240 lb. Ix),/R,? hm-Ignition IIments - 
Sosne time had to be taken to Telruild the e x p e r h a  set-up 

and also ground zero was mvd further from the amtml center where 

it WEIS to be set up migiii ly but was changed kause 'o f  lack of 

C r p g d c  lines. 

Also bgcause some of the shrapnel action during the 240 lb. 

Lt+/'H2 explosion more barricades were erected for protection of 



and v o l m  which is needed to set off the 240 lb. mixture is the 

minimin and also the mxage value. 

N o n - I n s m n t d  Bspglr iinents 

The question was raissd as to what effect the instrumtation my 
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Fully Instruslented Auto-Ignition lkpmimn ts 

Again the equipnent was rebuilt and set-up at ground zero surd 
this time the objective was to measure and d&e& as many parameters 

as possible. In addition to the probes to deterinhe the liquid 1-1s 

in the tanks and the screens which measured the charge and voltage 

gemration, three high speed cammas were used t o  recod the phenama, 

a thennocouple grid WBS put into the lower tank consisting of 30 couples 
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in four layers, a photamultiplier tube to sense any light from the 

ignition and explosion before it was destroyed by the explosion, and 

two antennas, one looking immediately Over the lower tank, the other 

a little farther away. 

The thermocouple grids were to measure the shock front and the 

reaction front velocities as well as mixing, etc. as in the tests 

described earlier which were carried out a+ the Air Force Rocket Pro- 

pulsion Laboratory and Edwards Air Force Base. They were made of t36 

gauge teflon coated copper-constantan wires manufactured Lit0 a single 

cable. The thermocouples were carefully welded under a ~ m l l  20 power 

microscope w i t h  a minimum of mass at the junction. 

As in the previous instrumented experiments, 'hey were then fas- 

tened to thin support wires and passed fran the tank through a conduit 

and to a junction box locater! at ground level. 

A series of blast gauges were set at ground level in three lines 

120 degrees apart radiating out from the lower tank. 

The two antennas were to pick up signals from the discharges as 

a result of the fields generated by the mixing processes. 

All the signals from all this instrumentation were transmitted 

back to several instrumentation vans where much of the information was 

put on tape and strip charts. 

Again the tests were conducted as previously and all the data 

recorded. The mixing was monitored with the thermocouples and the 

voltage generated measured with the screens. The eleventh auto-ignition 

experiment produced ignition and a subsequent explosion. 
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All the data was recvrded from this explosion and the information 

which was on tape was la ter  reporduced on s t r ip  charts for analysis. 

Again the expected number of experiments necessary to produce an 

explosion with a certain miss was verified and the yield as determined 

by comparing the blast gauge data to  published literature \a- as expected. 

Some time had t o  be taken to pull a l l  the information off the 

tapes and t o  put it on s t r ip  cl.~rts so that the various traces could be 

stabilized. Unfortunately the paper used by NASA was of the non-permanent 

type and the records darkened as thcy were used and a second set had to 

be obtained to ccnnplete the analysis. 

The analyses of the traces were simpler in  this case than on the 

earlier experiments since the traces had more separation between them 

and it was easier io follow a l l  the variations. 

A. Velocity Vector malysis 

This method was based on the average velocity components obtained 

f r m  the ratio of the distance, As, between two thennocouples to their 

difference in response time AT as the reaction front passes over them. 

The reaction front (asswned spher.) is oriented perpen- Case I 

dicular t o  a line between two thermocouples and nob-?s as shown in  

Figure 79A. This would give an average velocity of t3.e reaction f n r t  

directly equal t o  and would be located b s  a good approximation on 

the midpoint of the line between the two thermocouples. If the reaction 

front moves in  any other direction the ratio becomes a component of the 

front velocity only. 
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-- Case I1 The reaction front (assumed planar) is oriented perpen- 

dicular t o  a plane containing three thennocouples a d  moves as  sham 

i n  Figure 79B. This is essentially a tvm dimensional case with the 

edge of the front appearing as a straight line. 

We can see i n  Figure 79C the relation between the velocit ies of 

a point A on the reaction f m n t  and a coincident point B m v i  , along 

the line connecting the Thernaocuuples 1 and 2 can be found irom the 

relative velocity equation 

- 5 

v A =  V B + G N B  

The direction of GA is perpendicular t o  the reaction front and 
... 

is paral le l  t o  the front (Figure 79D). Similarly, i f  a pair  of 

coincident points C and D be taken with point C i n  the front and point 
vA/B 

D moving along l ine  1-3, we have the relation 

* - - 
'D - vC + 'D/c 

Again the direction GD is  perpendicular 3 the from 

(97) 

and 'D/C 
is parallel  t o  it. Since the front is assumed t o  be planar and trar's- 

- 
lating cr = vA then we can see from the figure that  the l i ne  t e r -  

minating the hown vectors vB and qC is also parallel to the rea(:- 

t ion front and from the vector polygon Figure 79E, the velocity of the 

- 

reaction front is seen to  be a vector perpendictllar t o  this l ine  and 

is also terminated by it. 
& .. 

1-L "€Us in this case i f  two average velocity components GR = z1-2 
z LE,-, 

and vc = are known, the average front velocity can be found 
1-3 

from the velocity polygon. This average velocity is located as a good 
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approximation at the centroid af the triangle formed by the three 

thermocouples. 

Case I11 The last case is the most general in which reaction 

front (assumed planar) passes obliquely in space through 4 thenno- 

couples not all on the same plane. By an analogous development it can 

be shown that in space the reaction front velocity ?A will be per- 

pendicular to a plane terminus of - three coinponent average velocity 

vectors - and will also be te-ted by it. (Figure 79). 

are known SA can be found. 

Again CA is located as a bect approximation a t  the centroid of the 

tetrahedron formed by the four thermocouples. This method could be 

carried out using three different techniques: 

1. Graphically using projections of the space vectors and 

descriptive geometry. 

By vector analysis using the equations 

a. Equation of the reaction front plme: 

2. 

ij *(F - GB) = 0 where 

b.  m t i o n  of the reaction front velocity: 

3 .  By analytic geometry using the equations 
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1 

A = vQ vcz 1 
By %s where V 

'Dy 'Dz 

a. Equation af the reaction front plane 

Ax + By + Cz + D = 0 

, B c -  

vBx vBy 

wcY 
vDJc vDy 

C =  1,and D =  

'BX 'Bz 
1 

1 
vcz 

'Ibc 'Dz 

'BX 'By VBt 

vcsr 'cy 
vnx vDy wDz 

b. Equation of the reaction front velocity 

, with direction numbers D 

These methods gave a first approximation of the location of the 

ignition source in a region 6 to 8 inches above the top level of the 

thermocouple grid and near thermocouples 3 and 4 .  This allowed the 

use of a second method of analysis shown in part B. 

(B) 
After the ignition source had been approximately located, several 

Reaction from Displacement versus Time Analysis 

plots of front displacement versus time were made from pints in this 

regim. Theoretically the proper location should give a plot forming 

a smooth curve. Actually scattering was obscrvd i n  the plots.  This 

was attributed to the differenccs in reaction times of the individual 
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thermocouples due to different bead sizes. The best plot showed ;I 

clearly defined group of thermocouples on a smooth curve ( p r x t i c a l i y  

a straight l ine).  This gmlp would represent those thermocouples 

of the stme site and the same reaction the. Method A was itcrutcd 

with the select group of thermocouples as i n  thc following exmplc. 

&ample: IJsing the analytic geometry q u i t i o n s  Part A Method R 

Given Thermocouple gmup 1,31,28,11 

Number Location in  f t .  (fruin #l) Time i n  sec i n  sec Velocity Coml,. 
ft/sec 

2 v v "- 
X Y X Y 

1 0 0 0 3.65787 0 0 0 0 

31 1.63 1.53 .582 3.658'13 .00016 10,187 9,562 3,637 

28 ,822 .083 .Sa2 3.65797 . 0001 0 8,220 831 5,820 

11 .822 .083 .166 3.65795 .go007 11,743 1,187 2,371 

Substituting in  cqiation (100) we have 

A * 29.332 

R =  ,9036 

C 30.058 

D e -416.82 

then 

n - 9,921.8 ft/scc 
_-I__ 

v =  
2 - 7  A 

/A2+ B + C 

with direction numbers (29.33, ,903, 30.06). 
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In a similar nmncr othcr groups of thcnimcouples gave thc  following 

data : 

Croup Direct ion Nnnbers 

1,4,9,6 10,6@1.1 29.33, .903, 30.089 

9,10,19,16 8 , 8 9 7 . 3  21.23, 54.597, 37,647 

1?,28,10,19 13,111.7 53.91, -53.54, -61.53 

9,19,6,8 7,563.9 88.53, 281.3, 182.4 

This allowed n refinement of t k c e n t - e r  IGcntion t o  a p i n t  S" about 

the top level of the themcoup le  gr id  mi 2.6" f r a  94 thennocouple 

horizontally and S" froni b l 2  horizontally (about 1.7" fmi tank wall). 

See Figure 80. 

Par t  B was i t e ra ted  again from t h i s  sew center and gave a smoothcr 

p lo t  with l e s s  s ca t t e r  (Figure S l ) .  

t o  the data t o  obtain the slope of t h c  p lo t  gave 3 front velocity of 

10,600 f t / s cc  ds the bcst value of thc reaction front velocity i n  the  

Applying t h e  least squares method 

tank. 

Separation between the sliock f ront  and thc  reaction front was not 

observed 3s in previous experiments since due t o  thc design of the  

experiment the whole contcliner has f i l l e d  h6th the mixing region. 

A l s o  the f i r e h i l l  ws not observed since no over-all  f a s t  cameras 

a11 of than wre aionitoring closc in data.  were set up 

Time Rclationship Rctwr.cn the Various Ins tmienta t ion  Systcms - 
In the instrumentation sct-up each individual part. had its 

charac te r i s t ic  t h e  constant ;lid ais.' the trnnsmissiun lines between 





21 8 

0 

0 
Note leading 
thermocouple 

0 

I I 1 1 

edge of 
scatter 

7.8 7.9 8.0 8.1 8.2 
Clock Time in Millisecs 

Figure 81 Reaction Front Displacement Versus Clock ' 
Time, Dctermincd fran the Thcrmocauple 
Response Times Shown 

pattern 



21 9 

canponents effected the response to the signal input. 

The cameras were operating at different speeds and the timing 

lights were located at different points with respect to the shutter 

so that the physical event recorded was in a different spot on the 

film wjth regard to the universal timing code. Also since the physical 

event could have occurred while the shutter was closed, a certain 

amount of uncertainty as to absolute time for a specific event exists. 

The thermocouples had a certain amount of delay in response, but 

since they are made very similar the variation between them is not 

too great. Each will respond sanewhat late to a signal but the dif- 

ferences in time between measurements are not great. They exist 

however, and therefore the leading edge of the plot was taken as the 

wave front since the data both bunched up and indicated the most 

accurate timing. 

Taking the data and allowing it to be shifted in time within the 

interval of uncertainty then allowed the lining up of the physical 

events as shown in Figure 82. Obviously all instrumentation recorded 

only one and the same physical event, the explosion, and so the event 

must have occurred only at one time and each instrument recorded it 

at the same time although taking the uncorrected records just as they 

were put on tape or film it seems that the same event was recorded 

at different times. 

Figure 82 shows how the different instrumentation systems line 

up. The thermocouples sensed the explosion first, naturally they were 

located closest to the point of ignition. Then the cameras recorded 

the first flash of light as the explosion merged from the mixing tank. 
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Time-sec. 

d 

* Position of Shutter "Open time" increment 
rnw vary within total time interval. 

Note - No meaningful data was obtained from the 
photomultiplier, or the antennas. 

Fig. 82 Time relationship of inatnunentation during 
last 240 lb. test explosion 
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Last in time the pressure sensor at ground zero picked up the ecplosion 

and recorded it. 

I t  nust be realized that the time iniervals betmen these recor- 

dings are very small but nevertheless existent and must be taken into 

account for exact analyses and interpretation of events. 

All the time constants and delay times and camera dark times, etc. 

evolved through numerms discussions w i t h  the Ksc personnel responsible 

for the particular instmuentation and circuitry of each measurement. 
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PART 111 

SATURN V DESTRUCI' SYSTEM AbUYSIS* 

Having developed methods for ana? zing and predicting, both 

theoretically and experimentally through modeling, the behavior of 

liquid rocket prcpellant mixtures and their explosive yield as described 

in the previous parts, t h i s  section w i l l  be concerned with the applica- 

tion of these methods t o  actual systems. 

the more certain prediction of explosive yield is a function 

of the mo6e of failure, which in many cases is difficult  to  predict, it 

was suggested by the principal investigator to analyze the Saturn V 

destruct system. 

be used to  control the mode of failure of the Saturn V in case a 

Since, if it should give a low explosive yield, it could 

catastrophic failure is imminent. Rather than letting a failure occur a t  

randcnn and not knowing what to expect it is better t o  have the rocket 

fail in a certain predetermined manner and have the howledge of what 

to  expect under these conditions. 

W i t h  this in mind the analysis of the Saturn V destruct system was 

undertaken, and the analysis discovered a nwnber of interesting facts. 

A. Theoretical Analysis 

For the purpose of the theoretical analysis several models were 

selected, and since the results were amazingly similar, the simplest 

ones were believed to be the best, or a t  least most useful. 

The f i r s t  step in the analysis required a knowledge of the mode of 

failure and to this end it was necessary to  obtain information as to 

the effect of the destruct system upon the Saturn V. This proved to be 

much more difficult than anticipated. Since this information was to  be 

t 
Footnote a t  end of Part 111, p. 345. 
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furnished by NASA a number of knowledgeable individuals were consulted. 

Wch disagreement was found among the groups in  NASA. 
120 Finally we received a le t te r  from Marshall Space Flight Center 

which spelled out the effect of the destruct system upon the Saturn V 

vehicle, and since this was the only infomiion which we received in 

writing it was used as the basis of t h i s  analysis. 

If better infonnatim should became available a t  a la ter  date the 

analysis as presented here could be repeated using the identical relation- 

ships b u ~  different numbers. 

Figure 83 shows the effect of the destruct system upon the Saturn V 

vehicle as given to  us by NASI.. 

The des tkc t  system was to cut slots into the various tanks and let 

the fuel disperse out one side and the oxidizer aut the other. This 

s e w  to be fulfilled except for the third stage and this problem w i l l  

be treated later and in  greater detail since it seemed t o  hold a poten- 
L 

t i a l ly  dangerous situation. 

Thus the analysis then, except for  the above mentioned problem, 

consists i the determination of the following: 

1. 

2. 

3. 

(Xltflow for each stage with respect to  
time for the s l o t  encountered. 

Determination of the quantities of liquids 

on the ground at  any time. 

Determination of the sp i l l  ellipses, including 

hydraulic jump, etc. which determines the puddle 

depths at  different points or  regions. 
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. Payload 

3 -  x 22' s lo t  i n  LH2 tank 
S - I V  B Stage 

47'' dia. hole i n  
bottom of LOX tank 

2 '  x 31' s l o t  i n  LH, tank - 
S-I1 Stage 

3'  x 18' s lo t  

2 '  x 20' s lot  i n  8P tank 

S-I Stage 

Figure 83 Schematic Diagram o f  Saturn V,  wlth Effects o f  
Destruct I n i  t i a t lon  Indicated-NASA Informatlon. 
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4. Determination of the puddle size and 
the spreading velocity at ;my time. 

5.  Determination of the liquid stream 
impact point at any time. 

6. The ?lotting of the spill areas at 
squa.tial times. 

7. Determination of the amounts of liquid 
vaporized both due to ground action ( d l )  
and due to the mixing of the various 
components. 

8. Determination of the mixing characteri.stics 
in the overlapping puddles of both fuels 
and oxidizers. 

9. Determination of the mixed areas and 
volumes for LOz/RP-l, and Lo2/LH2. 

10. Determination of JS volumes - the gas cloud 
forming a hemisphere proportional to the 
areas (ssuming no wind).  . 

To determine the above the following procedures were used. 

Having accepted the mde of failure or the effect of the destruct 

system as given to us by NASA, computer programs w?re set up to determile 

the outflow of the liquids fm the slots in the tanks. 

The next few pages show the theoretical treatment of e a  tank 

outflow. 
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Liquid release rate from the tank 

Effluxvelocity through the slot. 

Figure 84 Liquid Outflow (Slo:) 

Figure 84 gives a schematic sketch used in the following 

a!!aY{P j s . 
A t  the instant when the liquid is at hi , the velocity V, 
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at auy point L in .the jet is given by 

-, 

- *v2 = VI2 + @1 - p) + 2gh e 

. h = h l -  E 
e = aeplsityof fluid 

= pressure in tanlr at liquid level hi p1 

0 = aver- velocity in slot 
S 

A = area Of Slot 

The average? velocity in the slot can be found by integrating 

equation (102) for V between h = - b/2 and h = E+ b/2 

vs = 6 jmi2 vdh 

K-b/2 

!jubstituting far V from (102) into (104) gives: 
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Where 

(103) 

cv is the velocity coefficient and V1 is given by equation 

An iterative scheme, eg. Newtm-Rhapson, can be used to solve for 

vs, h h g  p1. 

Equation (105) gives the average instantaneous velocity in the slot 

when - the li&d level is exactly at \. The equation is valid for 

h 2 b/2. 

When Eic b/2, the slot becanes a weir. 

Efflux Velocity lhrough a Weir 

The velocity at any point z at tke instant when the liquid 

level is at 'k ,isgi-bY 

Figure 85 Liquid (kt f low (Weir) 
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lhe average velocity is given by 

Substituting for V into equation (107) gives 

(107) 

(108) 

Equation (108) gives the average instantaneous we!.ocity in the 

weir when the liquid level is exa,-tly at hl. The equation is 

valid for KS b, or for K b/2. 

The areas of the slot and weir are ab and & respectively 

where a = width of slot. Hence, the average flow rates are given by 

Tankh-essure, p1 

Ass- a polytropic pmcess, then 
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where pi = initial pressureat level hi 

k 7 1, i w W & w i o n  

revenrible isentropic expansion - d&, 
di = initialvoluwtabovele\rel hi 

= volumeabovelevel hi 

For unifom 81188 tank with flat top, equation (111) beamxi 

Equation (111) may be written 

pi *h 

TimetoLuwerLiquidLevelinTank, t 

/'*a EP L& 
V h P t = /t dt = -  

0 hi 

for the slot then 
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where fh - function of K 
v1 = function of K 

for the weir then 

where v1 1 function of H 

Jet Velocity at mtum and Jet Trajectory 

The velocity at the ground is given by the vector strm of the 

horizontal velocity leaving the slot, equations (105) and (108) , and 
the fall velocity of a particle of water falling a dis€mce d + b/2 

for the - Slot and d + l l / Z  for the - weir. Calling this distance D, then 

and the cross-sectional area of the j e t  at  the ground is 

- 9 = A v/vg 
7 3  

Letting D be the mean &tica l  distance from the datum t o  the slot 

or weir, the time t f ,  fir 9 fluid particle to fall distance D, 
. 
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is given by 
1 

tf 0 ( 3 3  

The &ri&tal distance 

reaching datum is 

x, that the fluid particle travels before 
I ,  

x O V t f  

procemtre 

1. Fquations (10s) and (108) can be solved numerically for 
t 

Vs and Vw withgivenvalues Ti and A andthecorrespanding 

values of fh. 

2. ~ r o m  continuiq -4 (1) above, v1 as a fimction of Si 

and H can bedetenuined. 

3. Equations (115) and (116) can be integrated Illrmerically 

todetsrmine ts and \ the tirnemquired to lower the liquid 

level to  the specified values of Si and R. 
.- - 

4. From (1) or (2) and (3) above, the  

@nction of time can he d e t e d e d .  
. ‘ t i -  

5. The curve of the flowrate Q, as a 

be displaced by time tf so that the velocity 

flow rate Q , as a 

J . ,  , : 

.:unction of tibe can then 

a t  the ground, Vg and 

the flow rate, Q, a t  the ground can be determined as a function of time. 

6.The horizontal displacement of the jet, x, as a function 
t. 

of time is readily determined fmm squation (120). 
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\ .  

7. The area of the jet at the ground can be detemined as a 

function of time or distance. See figun 86. 

Ti&- requ ' *&I ior jet stabilization 

After the destruct system is initiated and the slots o p e d  

in the tanks it will take a short but finite time to establish the 

stabilized flow. The following will give a short analysis of this 

Using the mmentum equation 

[ dt 
0 

' C Y  C 2 d v  h ( l - - )  ,= - V  - 

i 0 
u f -  0 

2 C 

-5 ( l - z g h )  

from the above 

(12;J) 

and 
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IF = o2 2gh ( 1  - 8 )  
C 

1 
-t z 1 

V = - [ 2 g h ( l - e  ) J  
C 

The above equation is the.outflow jet velocity at  any time 

t after the opening of the slot.  A quick analysis gi-s the following 

results. 

'iable X 

I - e  O = o  
1 - e-'. = 1 - 0.368, = 0.632 
1 - e-2 = 1 - 0.135 = 0.865 
1 - e-3 = I - 0.05 = 0.95 
l - e  . -4 = 1 - 0.018 = 0.982 
1 - e-' = 1 - 0.007 = 0.993 
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Table XI 

f ‘0 

= 0.795 Vrnax 

= 0.925 Vmax 

v3 = 0.975 Vm 

vO 

v1 

v2 

v4 = 0.991 v ,  
v5 = 0.997 Vm 

Shape of the Liquid Pool 

Next it hwj necessary to  establish o r  estimate the shape of 

the liquid splash pool with the liquid j e t s  impinging upon the surface. 

The derivation on the next pages indicates that the pool is 

essentially circular and the eccentricity of the splash ell ipse 

is too small to  warrant its consideration in  the further treatment of 

this PrOblWa. 

Below, the method for estimating the shape of the liquid pool is 

outlined and its variation with time given. 

Basic Assumptions 

1. The pool is e l l ip t ica l  w i t h  the  stream impact center 

coinciding with the focal point nearest the rocket. 

2. The pool has constant depth as long as fluid 

continues to  be added. 

3. The fluid stream is circular with uniform velocity 
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as it hits the ground. 

Figure 87 is a schematic sketch of the physical configuration used 

in this analysis. 

Figure 88 gives soone of the nomenclature used in the analysis 

of the splash puddle configuration, 

Derivation 

= a t  g t  vvert. 

z - distance from the bottom of 
the slot t o  ground 

Letting VA and VB be relative velocities with respect to 

the velocity of the focal point of the ellipse -Vfl 

A t t W  t 

and 
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2 

rocket center line 

V - velocity vector at  impact 

’ center line impact pint f1 

X 

Figure 87 Scheaatic Sketch of Slot, Fluid 

Steeam and Splash Puddle 
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Vvert. vA 

Figure 88 Nomwclature 

where in equation (126) 

the vertical component of the mass flow. VH is the velocity caused by 

the homzontal mmentwu. 

g' is the spreading velocity due to 

To determine the distances El and nl , from the definition of 

the ellipse 

1 
M = (b2 - .2)z 

and 

(128) 
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Rom (125) and (128) 

1 
b - ( b 2 - a )  2 2  5 =  1 
b + ( b 2 - a ,  2. z 

mitiplying out 

1 1 
2 2  VA [b + (a2 - 2)5] = VB [b - o2 - a ) 3 

also from (126) 

Substituting (131) into (130) 

and 

(129; 
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If  Q isthebotalvoluaeonthegrtnmdand 

d isthepuddledepth 

Q = P a b d  

and 

a x 9  

l f h d  

substituting (135) into (133) 

bz$ = (b2 - 
r b d  

and 

kterminatim of I!&, =VH 
For the first step assum that the puddle is circular 

with Q cubic feet on the ground and Q being the vo3ume flow rate 

into the puddle. Figure 89. 

Q = r2 d, Q * ZTr d x  dr , but since dr/dt = V 
TP ' 
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Let 

From Continuity 

IQ 

Fl#ure 89 Splash Puddle 

Morimtal cQBmpo31ent of velocity as 

the s t m  leaves the rocket 

(vertical compomnt = 

Cross-sectional area of 

the rocket 

Cross-sectional area of 

the m 

0 3  

the stream leaving 

stream as it hits  

and 
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Since 

a-d using (141) 

and from (142) 

vsp 
'H = V 

=1 

using (139) and (143) and substituting it -a (145) 

Solving for a and b 

(14 5) 

fm (135) 
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C 
'it b d  

a = -  

froan (137) 

since fxwn (144), (146) and (139) 

w i t h  (142) 

and substituting (149) into (147) 
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can be determined at any time t, and w i t h  this information a and b 

can be calculated giving the configuration of the splash puddle 

ellipse. 

Taking the first stage of the Satum V as an example, since it 

gives the largest impact angle and therefore has the greatest effect 

upon the results, they are as follows: 

*2 t - 100 SBC 'hor = 6.82 
Q = 37,877 

= 3.626 
V vert - 74.5 

b = 158.8 ft 
a = 152.2 ft 

t = 160 sec 'hor = 4.45 
Q = 38,700 

v 74.5 
= 1.726 

AO 

vert 

b = 161.5 f t  
a - 152.7 ft 
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RP-1 t = 100 sec vbr = 6.30 
Q = 18,958 

: 3.142 
v- = 51.2 vert 

b = 113.8 ft 

a = 106.2 ft 

t = 160 sec = 4.16 
Q = 19,642 

90 = 1.542 

vvert = 51.2 I 

I 

b = 117 ft ' 

a = 107 ft 

From the above it can be seen that the splash puddles are 

essentially circular and using circles makes the analysis much simpler. 

Having shown that the flow pattern on the ground is essentially that 
* of circular splash puddles, another phcmommon of the splash puddles, 

namely the hydraulic jump was investigated. This last phenomenon 

produces a variation in thickness of the puddle and this may become 

important in estimating the quantities mixed by having the puddles flow 

together and overlap. 

The following pages treat th is  phenomenon and characteristics. 
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Radial Flow Patterns 

The purpose of this part of the study was to provide a method 

for predicting the depth of flow w i t h i n  a radial flow pattern containing 

a circular hydraulic jmp. The results can be used to aid in predicting 

mixing rates of the puddles formed by spilling propellant camponents 

fmm a rocket. 

Initially a purely analytical approach was tried. 

Using the notation as shown in Figure 90, expressions were 

developed by applying the equations of conservatim of mass, momenturn, 

and energy. 

I. Conservation of MISS - (Continuity), (steady flow and 

incompressibility are asswned) 

a. within impinging j e t  

b. at 

c. at 

toe of jump 

heel of jug 

d. downstream of jump 

Q - 2 r r  y V 

(153 .  



a a 
J 
3 u 

8 
W a 

ii 
3 
c3 c 

W 
3 

.I 

0 
t 
W 
> 

a 

a 
c 
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Equations (lSl), (152), (153), and (154) may be quat& 

assuming no splash before the jump, and no losses due t:, evaporation 

or ground seepage. 

11. Mmentum Across the Jum~ 

It is assumed that the slope of the jump is constant. 

The forces on an elemental control volume within the jump are as 

shown in Pigure 91, and can be expressed as fol’rows: 

The em of the forces in the horizontal direction, assuming that 

The change in mmentum in the horizontal direction is 

The required relationship is (making use of equations (15 2) and (15 3) 
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Figure 91 Forces on an Elemental Control 

Volume within the Jump 
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Equation (135) can be written as 

'1 vO 
and F o - ' 1 / 2  , R =  - where Y =  - Y1 

YO rO terd) 

111. Energy Balance Itetolfeen Jet and Flow Field Up to Toe - of 

The following arialysis is made asswning that there are 

no friction losses and jet impact losses. 

The mount of energy passing station 1 (Figure 92 during time 

intern1 L!T, is equal to the amount of energy contained within the 

region "S', where AT is the time interval mq.ired to form the 

regjon "S" at a given flm-ate. 

f 

I I 

Figure 9L Energy Balance 
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The energy passing station 1 during the interval AT is given by 

The energy contained within the region "S" is 

(157) 

(? 58) 

Asslnning that the depth of flow is constant from r to ro , then 
j 

hi = h ripyo& (159) 

From continuity, 

- d r  
vi - * T  

Substituting Equations (1S9) and (160) into Elquation (158) w i t h  

r. c r < ro , gives J -  i -  

Evaluating the expression within the limits shown, the elmenc t h  

withradius rj anddepth yo hasbeenaasnited,andtheensrgy~. 

element nust be added to Equation (161). This energy is essei,-b cy 

potemtial energy, and is given by 

.A 

E E m; Y,PW - Yo, (162) 

where (H - yo) is the height of fa l l .  Since yo c<< H , H - yo I' H 
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and Equation (162) can be written 

2 E - nr. y pH 
J O  

Addkg 4~atians 

Es = 

(161) and (162) gives 

Substituting Equation (164) 

A 

Equating Equations 

int~ Equation (157) gives 

(165) 

(165) and (163) by cansenration of energy gives 

v? 

YO 

j 
r - 0  

n2rlpy J p Equation (166) ~ t r  be written 

The description of the flow given by Equations (151), (152) 

(156), and (167) is inCanplete, because the location c-t fhe jump, ro 

(153) 
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3 ;  unknown, as is the 1- of the jmp, rl- ro . S b e  analytical 

methods have been exhausted in the derivation of Equations (151). (152), 

(153), (156), a d  (167), an attempt was made to derive 2mpirica.l ex- 

pressions antpin ing the unknoms, r1 and ro . 

Length of Jtslp 

Bcperimentd evidence indicates that for rectanplar jumps, the 

length of the jmp vanes betwen 4.3 and 5.2 times the thickness at 

the heel of the jump. An empirical expression can be given by 

Letting n = 4, a d  rearranging terms gives 

Location of JMa, 

Local experiments -- conducted to establish a relationship be- 

tween the impinghg jet's flow characteristics and the radius, ro , 
at which the J- begins. 

tk form 

I t  was a s d  that the relationship is of 

- rO = CF; 
r. 

J 

where 
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Tlme results give values for c d b of 0.245 and -0.672 respec- 

tively. Substituting these values into 16qUation (169), gives the 

follawing: 

-0.672 - -  '' - 0.245 F. 
r. J 3 

Brpe- Leading to Equation (170) 

procedure 

These experbmts lere canducted on the roof of the Mechanical 

Bgifieering hi ld ing .  The apparatus was set up as shown in Figure 93 

and 94. The flow rate wis varLed giving circular hydraulic jumps 

ranging in diameter from 2.5 to 11.75 hches. Experiment No. 1 was 

performed without a nozzle, and Experiment No. 2 was performed with a 

3/16 inch I.D. nozzle so as to produce higher jet Froude nrmbers. 

For each flowrate, the Diameter, Do , WBS measured, and the flow- 

rate was determined by measuring volmes and elapsed times. 

The Froude llpnnber of the jet, F. , is 3 
given b 

where Vj = Velocity of the jet and D. = Diameter of the jet. 
3 

Results 

A plot of r+/ro vs F is shown in Figure 95. A curve of the 

form rdrj= cF! was fitted to the data, where c = 0.245 and b = -0.672. 
j 

;I 



Figure 93 Experimental Apparatus 





2 58 

Figure 95 i IydWic  3 np Rel.zt ionship 
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Equatiom (156), (167), (168), and (170) are presented graphically 

in Figures 9 6 h  99 respectively. 

A plot of the simultaneous solution of Equations (lsl), (152), 

(l53), (156), (167), (l68), and (170) is shown in Figure 100. After 

making several sample calculations using Figure'lOO, it was found that 

,nedicted depths at the heel of the jump were approximately twice those 

observed. Reviewing the assumptions made in the derivation of Equation 

(l67) it was felt that the error imrOlved by neglecting the losses 

iracurred in the abrupt transition from vertical to horizontal flow, by 

assuming the depth to be constant, and by neglecting frictional losses, 

accounts for.the sizeable departure from observed results exprrienced 

&en using Figure 100. Unable to account for losses neglected in 

Equation (167) analytically, Equation (171), using continuity only, 

where a =  5 
was used to replace Equation (167). A plot of Equation (1711, for 

various values of a , is shown in Figure 101. A value for a of 

8.14 to 0.10 gives results which best agree w i t h  observed results. A 

simultaneous solution of Equations (El), (152), (153), (156), (la), 
(170), and (171), is given by 
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FIGURE 96 CIRCULAR HYDRAULIC JUMP 
EQUAI’ION 156 
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FIGURE 97 ClRCULkR HYDRAULIC JUMP 
EQUATION 167 
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FIGURE 98 CIRCULAR HYDRAULIC JUMP EQUATION 168 
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EOUATION 170 -JUMP LOCATION 
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FIGURE 101 CIRCULAR HYDRAULIC JUMP 
EQUATIOR 171 
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where 

R =  2w2a ; s = 3a2x - 2 ~ c  - 
2 2  2 T = 8 4 c  + 4c /a ; u = 4k3/a 

3c/4Aa 

; V = 6a2/A 
2 W = 3ac/A2 - 243 c ; X = 3Aa/c 

; a = V / V .  ; c = 0.245 ; h = -7.672 
O J  

A = y./r 
1 j  

A plot of Equation (172) for vari . values of a is shown in Figure (102). 

Computer programs for the solution of Equations (156) and (172) 

are presented in the Appendix. 

Conclusions 

An effort was made to  apply Equation (156) t o  the regions down- 

stream of the jump, w i t h  the limitation that the Froude number a t  the 

heel of the jump be less than one. Carrputer programs for the solution 

of the equation, both considering the side forces on the elmental 

volume and neglect*# them, are presented i n  the Appendix. T I  a s  

found that a very rapid decrease in  thickness was predicted inmediately 

folltwing the jump, and )J, applying continuity to  the predicted di-  

mensions an increase in  velocity resulted for an increase in  radius. 

This not only contradicts intuition, but also observed results. There- 

fore, Equation (156) is only applicable t o  the situation in which a 

jump Ocairs. 

From observation, it is felt that the depth downstream of the jump 

can be considered appraximately constrnt for a11 practical purposes, 

its value taken as the depth a t  the heel of the jump. 
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Th. above analysis shmd that the splash puddles can be coslsidcred 

cirarl;u for all practical pnposes since the eccentricity is very d l .  

This allows f o r d  less laborious treatment of the problem and a ulch 

shorter Blethod for detennining the mixhg function. 

Fnm the slot s ize  aal basic fluid dynamics the aut-flaw velocities 

and flow rates as a fimction of time can be determined giving the zmxnmt 

ofliquidmthegrolmdatanytime T . Shiswasdone 'byca~~~~ter  

program and the results are shown in  Figure 103, norrsalized for thc 

S a m  v. 
The inpact point $190 can be calculated by the a m p t e r  program 

giving tlze time variation of the impact point on the ground d a c e .  

Ihe results of these calculations are shown in F i p i s  104 through 108. 

lkdepthatanyoyletigle T oftheplddlesmsasmedtobe 

constant as supported by the theoretical investigation, and the variatim 

with time was d a t e d  using the mamentun spreading relatiaships 

during the early times am] the hydraulic head spreading at the later 

tintes. Both these curves were plotted and *re they crossed the change 

fmn one result to the other was made. The complete curves represen+.'yg 

the depth of the puddles are also given in  Figures 104 through 108. 

Frun the quantity of propellant on the ground and the depth a t  

any one time the radius of the p&dle citl be calculated and the vari- 

ations w i t h  time are again presented i n  the same Fikwres 104 through 108. 

Having the impact point for each fuel or oxidizer on thc ground 

, and and the amount of each co~llponent on the ground a t  any t ime  T 

the depth, the resulting radii can be plotted t o  give the splash pattcrns 

which allow the determination of the mixing regions and the quantities 
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Figure 103 Volume on G m m d  from Each Tank Based (h W Slots 



270 

9 
cu 

ai 
0 

9 
0 

b b a rl 
0 

0 

0 
0 
N 

0 
0 
4 

0 



271 

0 
N 

0 
0 
N 

8 
rl 



272 

9 
hs 

\ 

L I I 
hl \o 

t I 1 

0 

0 

0 

9 
0 
ri 



0 
(v 

0 “ 

273 

I T  I 

x 

r I I b I I 
N 0 

I I I I 1 

0 



274 

00 
0 
rl 

. 9 0 
N rl 
I * # . .  # & I .  1 . 1 1  I e I .  L 

I 

L 
8 
rl 

0 



275 

which axe achmlly mixed at any time ‘c . 
Figure 109 gives the splash pattern and the mixing regions 3rour~l 

the Saturn V rocket due to the activation of the destruct system and 

shows the progressive mixing as time goes on, The actual conditions 

are plotted fbr 5, 10, 15, 20, 30, 40, and SO seconds after the ini- 

tiation of the destruct system. 

A Scale change was necessitated at this point to be able to pre- 

sent the continuing splash patterns on the same size of paper. So 

Figure 110 presents the continuing splash patterns for 50, 60, 80, and 

120 seconds. The first one was selected to give the overlap with the 

previous Figure and a comparison can be made, 

Another scale change was made for the last part of the splash in- 

vestigation to again shrink the pattern so as to fit it onto the page. 

Figure 111 presents the patterns for times of 120, 180, and 240 seconds 

after the initiation of the destruct systm. 

From the splash patterns the average depth at any time T was 

obtained by dividing the total splash area into the known volume on the 

ground. The areas of the mixed constituents Lo2/LH2 , LO2/W-1 , and 
MiIli2/RP-1 were then mltiplied by the average depth at that time to 

obtain the mixed volumes. The volwne of the three way mix was most 

frequently assumed to be one half LO2/l,ki2 and one half Lo2/RP-1. Other 

cambinations were also investigated such as having all the IH2 react 

before any of the RP-1 was allowed to, or the evaporation was such as 

to produce a certain detinite mixing depth. These simplifying assump- 

tions were made to gct some approximate answers early in the invcsti- 

gation and after much more detailed work with computers, proved to be 
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Splash Prlttcrns for 53, 60, 80, 120 sec. 
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Splash Patkrns for 120, 180, and 240 sec. 

Stagc I I 
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Figure 111 Splash Pattern for %turn V Destruct Systcm 
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rather good and i n  basic agreement with the later much mom clabomtc 

methods of analysis. 

For the more elaborate work the evaporation losses were theoreti- 

cally calculated using the methods of Part I .  This allowed the dctcr- 

mination of the mixture on the ground a t  any time T , considering 

the heat exchange among the propellant components and the propclliint 

components and the ground. 

The evaporated material was assumed to  form a hemisphere, (no wind) 

aboue the puddles. The clouds came together and mixed before the 

liquids could on the ground and so they show the f i r s t  potential €or 

producing an explosion and a yield, hut the liquids started mixing 

soon after and they had much more energy which could be released i n  an 

explosion. Using the msthods as discussed in detail in Part I ,  for 

the analysis of the Saturn V destruct system the resulting explosi-. 

yield curve can be plotted. Figure 112. 

I t  is well to mention again this curve of Figure 112 is the ex- 

plosive yield which can be expected a t  any time T i f  ignition should 

occur a t  that time. From the previous discussions i n  Part I and Part I1 

of this report and the many papers and other reports discussing t h i s  

subject, it has been shown that this curve would actually be terminated 

rather early in its development either by external or internal ignition 

sources so that the actual yield values are held to rather small numbers. 

The third and second stage, S-IVB/S-I1 Interstage failure is 

discussed in detail later in this section. 
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B. Experimental Analysis 

After having analyzed the Saturn V destruct system theoretically, 

it was decided to examine the results also from an experimental point 

of view. 

by the met~ds devtloped and described in detail earlier. Three d c l -  

ing methods tiere used and can be described as 

For this purpose the destruct system perfomawe was d c l d  

a. 

b. 

c. 

1/373 Scale Sand Model Analysis 

1/50 Scale Water W e 1  Analysis 

1/28 Scale Water Model Analysis 

Basically the procedure was to build models and then use than to 

determine the mixing function and from it the yield function. This 

was done by having different colored materials (sand or watcr) flow 

from the model tanks and m i x .  The analysis of these experiments rc- 

sulted jn these functions. 

Rather than going through the complete process for each method and 

thus doing repetitive work, it was decided to obtain the m i x i n g  curvcs 

for each of rhe d e l s  and methods without consideration of cvaporation 

and then compare the results at that stage. W i t h  good agrccmcnt of 

these throe experimental procedures, the best resulting curve was pm- 

cessed to finally obtain the modeled yicld function. 

From the modeling as will be described for each syst 1 '  thc pcrccn- 

tage m i x d  as a function of mkl time is obtaincd schcm;itic;illy ;IS 

shown i n  1:igiiw 11 3. 
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Figure 113 

WI curves m i s t  

since the). result in 

They will have to be 

d z l  time. 

Mixing Ratio Versus Mxkl Time 

be found, one for u)z/RP and anothcr for LO2/Ul2 

different yield walues for respective unit volumes. 

added to obtain the total possijlc yield ;It m y  

The m i x i n g  areas d e r  analysis d l l  form basically thrc-  regions, 

one where LO2 and RP m i x ,  the second where LOo2 and Ui2 mix, and thc 

third where ai l  three canponents mix. A fourth region whcrc Ut2 and 

RP mix is only of interest for cviipratioi; loss Jctcnnination or 



283 

possibly atm~sphere interaction. 

In the third region a decision cust be d e  as to the proportion 

of LQ, mixing With H* and that mixing with RP. 
L 

Tbe next step in the analysis is to expand the model tislc to the 

c o r r e s p O n a ~  prototype the. This relationship w i l l  be different for 

each of the systems used, but the method of detemination is the same. 

Since the outflow for the prototype is calculated by the computer 

program, while that for the d e l s  is determined experimentally, the 

relationships of prototype time to model times are 

tanks are emptying. Then with the assimption that the ratios of vol- 

umes mixed to volumes on the ground are equal for both model and pro- 

while the 

totype, step by step construction of the Vmix/VTotal versus prototype 

tinte function is possible during this the. Figure 114. The evapor- 

ation losses due to the mixing and the minor effect due to the ground 

are ignored. 

The step by step construction of the prototype mixing curve bcyond 

the emptying time shown in  Figure 114 can also be expressed mathematically 

as follows. 

(173) 

The above cquation is taken where both thc modcl and the proto- 

type relationships are known so that the next interval can bc calculritccl. 

By selecting desirable intervals successively on an ovcrlapping 
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basis, the complete prototype mixing function can be cmstmctcd from 

the d e l  mixing haction. 

'mix 
-5- 
AT I %+l 

Mi+2 

(174) 

pi+2 

Ex. 

Following the above procedure all the curves for each of the models 

can be constructed, stage by stage or for the total, keeping WZ/RP 

separate from L02/U12. 

These curves can then be compared as shown in Figure 115. 

Now either any one of the curves or an average front the three 

models can be selected and an evaporation factor selected, or the actual 

evaporation calculated at each time from the contact areas of the 

propellant constituents and the heat transfer characteristics. The 

characteristic cunres are shown in Figure 115 c,d. 

Since one unit volume of u) /RP-1 has a different mount of cncrgy 2 
than one unit volume of U32/Ul2, the ordinates of these c-urvcs arc 
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mllltiplied by their retspective energy facto(rs and msult in the yield - 
which can be w e d  at any time.r fram each of the constituent cam- 

binatiom. The sum of these yield components is then the total yield 

which can be expected at any t h e  T . Figure 115 e. 

If the cloud is considered in addition to the liquid propellants 

an the grcnand, then assumptions have to  be made as to  the meteorological 

conditions. These are rather difficult to predict in general and so 

such conditions as zero wind velocity, etc. can be taken. 

With the complete procedure laid aut, the detailed modeling 

methods are now discussed w i t h  the 

1/373 Scale Sand Model 

US0 Scale Model 

V28 Scale Model 

Sand Model Analysis 

To determine the mixing function the first modeling method used 

was to  take one of the Saturn V models which were on sale a t  the KSC 

Visitor's Center and to  subdivide this plastic model into compartments 

sh la t ing  the tanks in  the actual Saturn V. The scale of this model 

is 1/373 of the prototype. 

T i m  slots were cut to scale to  simulate the effect the destruct 

system would have on the prototype as specified by MSFC. These slots 

were pre-cut after it had veen tried to  actually make them by hot wire 

explosions. None of these worked out as satisfactorially as the pre- 

cutting. 
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The various tanks were filled with colored sand, red for RP-1, 

yellow for W2 , and blue for LO2. A clam shell was put around the 

model to prevent the sand from flowing from the tanks. Then the sand 

in the tanks was fluidizedby air at 3 inches of Hg tomake it behave 

like a li-. 

The model was set upcw a platform which rested on a vibration 

table which could be cantrolled in both frequency and amplitude. 

This canplete system is shown in Figure 116. The sand behaved 

like a liquid by-being fluidized in the tank and then when hitting the 

vibrating platform kept on flowing just as a l w d  d d .  

With this physical system it was only necessary t o  start at time 

zero by opening the clam shell for le: us say 1/2 second. W i t h  the 

clam shell closed and the shaking table stopped at that time, the 

splash pattern on the ground and the mixing could be studied at leisure. 

The areas and the depth of the various regions could be traced or 

photographed for later analysis. 

This process was repeated as many times as was desirable ,and 

thus each record represented a point on the mixing-model time curve. 

Figure 117 shows photographic records of the mixing process. - 
By the above method each stage can be analyzed indikidually or 

a l l  of them combined giving the mixing function for the desired can- 

dition. 

By the method discussed in the earlier parts of this section, the 

prototype mixing function can be determined step by step from the 

prototype ccnrputer program and the complete model mixing curve. ne 

results are shown in Figure 118. 
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Normalized for 1/373 Scale Sand Model 



If this were the only modeling method used here the evaporation 

could be calculated point by point and the yield versus time curve 

obtained, canpleting the prediction modeling. 

Since in this work, however, other modeling methods were used, 

they will be discussed and the results compared before the mathematical 

reductions are introduced. In this manner, three modeling methods 

were compared and used for the predictions. 

1/50 Scale Model Analysis 

Having carried out modeling with a ra+her small model and fluidized 

sand, it was thought to be desirable and probably more accurate to to 

to a 1/50 scale model of the Saturn V. 

The possibility of having this model constructed was investigated 

by our group and MSFC as well as private industry, and it was found 

that we could construct this model at a small fraction of the cost 

it wuld have taken to have it made. 

So for th is  reason the d e l  was constructed here following the 

Saturn V configuration. Again the slots were cut into the tankage as 

specified by MSFC, and after clamping arrangements and other methods 

of opening the slots quickly were tried, the rip-tape technique devclopcd 

by our p u p  was found most satisfactory. Duct tape was put over the 

slots and then fastened to ropes with pullies so it can be ripped off 

almost instantaneously. Since 5of these tapes had to be pulled a t  

the same time, it WBP necessary to have a coordinated system availablc. 

The 1/50 scale model was filled with colored water simulating thc 
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liquid propellants, again yellow for U2, red for RP, and blue for q. 
High speed cameras were set up w‘hich recorded the m h h g  of the pro- 

penants as they spilled out onto a =ked surface. P- 119. 
e . 0  

‘ *  Figure 119 1/50 Scale Mob1 Splash Pattern 

Using high-speed films and utilizing the flow aut calibrationmms, 

the areas of the spill and mix could be determined frame by frame and 

the nixing curves determined. These presented the quantity mixed as 

a percentage of the totel propellants present in terms of mob1 time. 

ThemodeltiEeWaS 

as was shown earlier in 

TheendTesultisshOwn 
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Figure 120 Experimental Volume Mixed - Time Function 
Normalized for 1/50 Scale kdel  
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1/28 Scale Model Analysis 

To have ii range of sizes to also get a feeling for the scaling of 

these methods, it was deciE3d to also carry on the experimentation hth 

a d e l  1/28 the Scale of the actual Saturn V. 

Again this model was constructed by our group for a small fraction 

of the costs imrolved in having it done elsewhere d also a t  a tre- 

mesldoars saving in t ine .  Figure 121. 

The d e l  was then used exactly as the 1/50 scale raxlel, except 

that the experimentation had to be cLrried out a t  the Solar b r g y  

Lab0;atOry about 12 miles from the campus, since the mof upon a 
the smaller experiments were carried aut was not large eraugh a give 
the splash areas roan to develop before miming off the edges. 

Otherwise the experiments were basically the same. Again high- 

speed cameras recorded the mixing processes for later analysis frame 

by frame. 

The analysis again resulted in a mixing function versus d e l  

time, and with the method described earlier could be t r . m s f o d  into 

the prototype mixing function, again without evaporation, Figure 122. 

Paving finished the analyses for each of the three d e l s ,  the 

Sand Model (1/373), the 1/50 Scale i-bdei, and the 1/28 Scale Model, the 

results from the modeling can he capwed. 

Figure 123 shows that mixing curves predicted for the prototype 

without evaporation are about the same. So the rest of the analysis 

needs t o  be carried out only once and will give the same rzsult 

regardless of which model is taken as the referencc. 
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Evaporation Losses 

Since the mixing process of the constituents produces evaporation 

of the cryogenic cmponent.., less and less total quantity of propel- 

lants is present and the lcjs occurs in the mix- region. 

If the mixing could be carried out without ignition occurring, 

which has been shown not to be possible, then eventually al l  the vola- 

tile canpomnts Hlaild be gcme and nothing wuld be left for any reaction 

to occur. W i t h  this, the explosive yield, which starts at zero when 

no mixing has taken place, w i l l  rebrm to zero. In between these limits 

in  time the explosive yield wpuld reach a m p r h  when the greatest 

amount of propellants is mixed and available for reaction. 

Since little information is available w i t h  r e g d  to evaporation 

rates, etc., our group carried an some experiments with spilling IN2 

m a sand bed which was resting on a scale. 

Weighing the combination of sand and IN2 a t  short time intervals, 

and subtracting out the ice f o d  from the atmosphere, the evaporation 

rates and the heat transfer characteristics could be estimated. Figure 

124. 

Using the heat transfer characteristics obtained and the infoma- 

tion that the contact area is essentially proportional t o  the profile 

area, the amount evaporated can be determined and the actual amount of 

mixed propellants present at  any time 'I is found. 

Translated into explosive yield, Figure 125, as described earlier 

and expressed in percent of the total, it is shtnm that the explosive 

yield for the Saturn V through destruct system activation starts t o  

rise in value and reaches a maximum of about 9 percent a t  about 150 
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Figure 125 Experimental Expected Yield Function for tiae 
Saturn v Destruct system 
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S d ,  then slowly fal ls  off. 

It is very doubtful that the actual phemmna can follow this 

curve very long since ignition, either through an external source or 

thou& internal action such as charge and v0l-e generation, w i l l  

occur leaving us with a rather low explosive yield. 

This last fact has been supported a Mlonber of times with smaller 

rockets and liquid propellant quantities which produced rather small 

wlosive fields. 

Frmn the abave analysis it is seen that the destruct systeu is 

essentially doing what it is supposed to do acept  in the thid stage. 

There a potentially dangerous c d t i o n  sears to exist. The 

activation of the destruct system could lead to an explosion in  the 

second stage which in turn could produce a ccmsiderably larger secon- 

dary explosion i n  the third stage. The total explosive yield value 

is still very low as far as the total Satum V rocket is concerned, 

but it occufs near the payload and may through its proximity do con- 

siderable damage t o  vital  system and possibly personnel. 

A detailed analysis of this case will be made in the following 

w s .  



S-IVB/S-II Interstage Failure Analysis 

During the Saturn V Destruct System Analysis it was found that a 

serious problem may exist due to  the activation of the Saturn V Pro- 

pellant Dispersal System. 

Ihe destruct system is to cut slots into all the fuel and oxidizer 

tanks except far the S-IVB KX tank 120~121 sere the ring charge w i l l  

cut a 47 inch diameter hole in the botttnn of the tank. The objective 

of this destruct method was to disperse the propellants and oxidizers, 

with the propellants pouring out on ome side of the rocket configuration 

and the axidizers on essentially the opposite side. 

The above objective seems to be met in all cases except in  the 

case of the S-IVB stage ami its interaction with the S-I1 stage, 

As our analyses, both theoretical and experimental (modeling), 

indicate, the Ix)o[ pauring out the 47 hi& hole of the S-IVB KX tank 

w i l l ,  through its wight and manen-, tear loose the thrust cone 

camying the rocket engine far this stage. Ixlo( w i l l  pour over the 

engine and through port holes in the thrust cone following some of the 

supply pipes which go fran the tanks to the engine. 

The S-IVB engine is only a few inches above the very thin LH2 tank 

dane of the S-I1 stage. The tearing loose of the thrust cone and the 

resulting downwar3 moveanent of this eslg&.w will cut the W2 cone of the 

S-I1 stage. This sequence of events will allow IAN to pour directly 

into the IH2 - a phenanenon or d e  of failure imtestigatd both under 

Project rn 223119 ard the Wversity of Florida program on Liquid 
1 2 4 S 47,55,56,58,75,79, Rocket Propellant Explosion Characteristics ’ ’ ’ ’ 

r22J23J24J25 - resulting in an explosicm of as few percent of t i l t3 
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total possible. 

"his primary explosion w i l l  OCCU]~ essentially miex the engine 

and thnist cane driving tham UQrWard or folwmd ??ith explosive velocities. 

These velocities may be of the order of several t h a w c u r d  feet per 

secamd. Such velocities have been measwed for large pieces of =tal 

in liquid propellant explosions through f i b  analyses of the Awp 
a d  lryiEB exp8riments. 

The forward motion of the thrust cone and engine is very likely 

to halt up the OO~WML idbead  between the Ix)D[ and W2 in the S-IVB 

stage, tbmqhlymixing the Ix)D(with in avery short time incre- 
mctnt. ThisEl(PIXlSIVEMfXINGM.mhasnotbe8n coveredinanyofthe 

experiments and test programs carried out such as Project PYRO, the 

ADL eqmhnts,  etc., but vas simulated by the modeling tedmiques at 

the University of Florida. 

The indication is that the ExpIx)GIvE MntING MOOE provides much 

mre thomughmixing before ignition than is accanplished bry them& 

more gentle mixing methods of the above cited experimental programs. 

ht even in those programs it was shown that the greater the energy for 

mjxing the greater wre the yields which could be obtained. Mr. 

Fletcher's mk6' also indicated that mom thorough mixing before ig- 

nition produced larger explosive yields. 

Thus our analysis, the only one to  the best of our knowledge 

which covers the EJXPLOSIVE MIXING MlDB, indicates that this secondary 

explosion produced by the primary explosion, of the type covered in 

the ADL and PYIEo experiments, can be of much larger magnitude than 

that produced by the non-explosive mixing modes covered in previous works. 



This effect of the destruct system was not originally expected to 

occaur, and even though it does not appreciably effect the over-all 

explosive yield of the Saturn V, still predicted as low, because of 

its location near the payload, it may be m*re critical in  nature. I t  

m q j  even'trigger htrther explosions in  the 

with the possible destruction of a radioisotope generator. 

Service Module, etc. 

This S-IVB/S-I1 interstage failure or interaction, is man-made, 

forced upon the Saturn V configuration by the design of the destruct 

system. It seem that the removal of the ring destruct charge from 

the S-IVB ulx tank would diminate the possibility of this particylar 

interstage fkilure. 

Details of the Analysis 

Below w i l l  be given some of the details and specific results ob- 

tained froin both theoretical and *kxperimintal modeling analyses. 

S-II/S-IVB Design Features: 

Figure 83 shows schematically the S a m  V configuration 

with the location of the destruct charges of the present Saturn V 

destruct system. Figure 12C gives the detail of the important sections 

of the S-IVB and S-I1 stages involved in the interstage failure analysis, 

the subject under discussion here. 

Effect of the Destruct Charges Upon the Saturn V Tank 
Omfiguration : 

Figures 127 

'Hz in the s-I1 and s-IVB 
and 128 give infomation as to the amount of 

stages respectively as a function of time 



.- 

LH2 Tank 

LOX Tank 

LH2 Tank 

S-IVB Stage 

S-I1 Stage 

Figure 126 Schematlc Dlagram, S-II/S-IVB Interstage. 



1 
8 
c h I I I 

c 
0 

I 



8 
c 

8 

8 

0 

i z 

M tu 
ac 
E s 
(u x 
4 . r( 

0 W 

cn i 



0 0 0 S m d N - 

'8 
c 

'8 

u 
Q w. 
n 

F 

'8 

ON 

0 



310 

0 8 F 

u 
3 
t 
a 

.c 
I- 



311 

as based upon the failure ihiarmatian supplied by NASA. Tbnt 

levels are also gi\ren. 
liquid 

UgfEScape Fma the s-m stage: 

TPIP: a c t b  of the destruct syst€an acto* to NASA infor- 

mation w i l l  cut a 47 inch diameter hole into the bo- of the u10[ tank. 

msw1 allow the Ixg( to drainout into the thrrust cone !supporting 

the engine. Figure 129 gives information as to the volrpae d liquid 

1-1 of MK in the tank as a functian of time. 

Forcesonthelbnrst~:  

with mpouring aut u d e r  the infl- of presaae and 

gmvity thrwgh the 47 inch diameter hole in the bottom of the S-IVB 

IBQ[ taIlk after initiation of the Saturn v destruct system, t- 

force5 are produced on the thrust eone sqqmmlg - Meengine. TRe 

Ixg[ jet, the pressure behiml it due to evapmization of Ixg[ in the 

IxIo[ tank, not even amsidering the impact load of the jet, wiil produce 

a loading on the thrust cone in tension of about 700,000 lbs. The 

impact will considerably irrrease this value. 

F m  129 s h o w s m a ~ i ~ ~ ~ ~  of LOX in the S-IWB LxlB( tankduring 

the expansion process and while filling the thrust cone. 

stxx?ngth of the Thrust cone and Engine and hmchrrw of the- 
s-I1 'HZ Iblme:. - 

The thrust cone carrying the S-IVB rocket engine is attached 

to the bottom of the ulx tank by 96 bolts which have! to carry the 

entire load in tension. It, detmnine the strength of this configur- 

atitm we took a number of the bolts anl tested thsm in our laboratory 
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both at roam and IdU2 temperatures. 'Rme results of these tests are 

shown in Figure 130, 

Tlre cadmid strength of these blts arid thus the system under 

uniformly distributed loading (whit& is very unlikely because of the 

violeslce of the UX jet) is less than the force prodw?ed upon this 

systm even odyen only static loading is cansidered. Thus it must be 

concluded w i t h  ce-ty that the thst cane assembly will tear loose 

from the bottom of the ul1( tank and drop, partially guided by the h l  

d oacidieer lines. 

Th9 sequense of events likely to follow the failure of the bolts 

is shorn and described in Figure 131, bth schematically asd pictor- 

ially based upon model studies. 

lhwming of the lplaust colle and Engine and Pamtrationof the 
s-I1 'Hz Tank Doaaa: 

As discussed above, it can be concluded with mathematical 

certainty that the engine and thrust cslte will drop. After movement 

of only a fw inches the r i m  of the expansion nozzle of the engine 

will contact the dam of the s-I1 M2 tank causing tremendous stress 

concentrations, which w i l l  cut a hole into this dane letting the 

engine penetrate into the S-I1 Ill2 tank. MBf nmning through the holes 

in the thrust cone, down the engine, and spilling over the edge of the 

thrust cone will thus enter the s-I1 w2 tank mi%in$ w i t h  IH2 below 

the engine and thrust cone aSsearB1y. 

Primary Mixing of LCM and LH, 

A l l  the events leading up to this point happenc3d in a very 
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Schematic configuration pr ior  
to i n i t i a t i o n  o f  destruct system. 

Destruct system in i t ia ted;  slots 
blown i n  LH tanks and circular 
hole blown ?n bottom of LOX tank. 

LOX pours in to  thrust cone. Sane 
LOX escapes through openings (for 
pipes) from thrust cone. 

Figure 131A 

Passf ble Sequence o f  Events 
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ldeight and impact o f  LOX i n  thrust  
cone breaks mounting bol ts  and ent i re  
engine assembly fa1 1 s. Engine 
penetrates upper bulkhead o f  S-I I 
LH2 tank, LOX flows i n t o  LH2 tank to 
s t a r t  primary m i  x i  ng . 

Primary explosion occurs i n  LH2 tank. 

Engine assembly i s  driven explosively 
through lower bulkhead of LOX tank- 
primary f i  rebal l  expands. 

Figure 13UContinued 

Possible Sequence o f  Events 
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Thrust cone-engine assembly contitrues 
forward, penetrating upper bulkhead 
o f  LO% tank, introducing LOX into  
LH2 tank of S-IVB. 

Engine continues through LH2 tank 
producing further mixing. 

Extreme turbulence and large amounts 
o f  LOX introduced into  LH2 tank 
produces extensO ve mi  x i  ng . 

(i 1 

Fj  gum 13lA Can ti nued 

Possi b le  Sequence of Events 



PRIMARY ( FIREBALL ) 

Violent secondary explosion 
occurs i n  LH2 tank o f  S-IVB. 

Secondary explosion f i r e b a l l  
expands destroying S-IVB Stage. 

F l  gure 131AContinued 

Possible Sequence o f  Events 
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Figure 13lBPossible Sequence o f  Events. 
Letter notations correspond t o  sketches i n  Fig. 
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Figure 131B Continued ' 

Possible Sequence o f  Events 

KLPRODUCIBILIW OF THE ORIGINAL PAGE'IS P&R: 
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Poss ible Sequence 0f Evsnts 

REPRODUCIBILITY OF THE ORlGlNAL PAGE IS POO'R.. 
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short*. UIxfrQln 

to mix until ignition 

typical curvefor the 

the S-IVB and Wt fma the S-I1 w i l l  contiare 

occurs proauCing the primary explosicn. A 

aoso~ts mixed as a function of tine is presented 

in Figure 132 for both the models which were usgd in simulating the 

events amd h r  the promtype based upon carrelatiar analysis. 

These curwes repsent  the amount nbed as a function of time if  

ignition does not occur. Nhen ignition occurs, it w i l l  terminate the 

curve at  the the of ignition. 

Igniticm and Predicted Yield for the Primary E@ osion: 

Based tipon the -tical investigations of ignition pk- 

mlmena 75*124J25J26, it can be cmcl~ded that ignition of the mixture 

mild ocan rather earlyduring thespixing phemmxm and thus result 

in a relatively low yield. Experience also s u p p ~ r t ~  this. 

'fhe type of failure involved in this case has been covered by the 
79,15,75,124,125 85 wbl as Isliversity of Florida investigation 

Project PYRO 229n9.  he S-IV test 22s119 with an explosive yield of 

about four percent seems to be applicable in this case. Also, the 

th0rwgh.l~ instnmented 25,000 lb. explosion experiments 

correlate well with the low yield prediction. 

79,7S,124,125 

Effect of w r y  Brp losion Upon Fing ine and Thrust cone Assembly: 

Tfie primary q los ion ,  occurring essentially below the thrust 

cone engine assembly, w i l l ,  based upon vector analysis, be propelled 

upward or forward carried by the shock and reaction front of the explo- 

sion at  velocities of up to several thousand feet per second. Velocities 

of this magnitude were verified through analysis of high-speed movie 
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film cowrage of liquid rocket pmpellant explosions Both in the ADL 

exp~ents' ami the p n a ~  experiment *re trajectories of large 

pieces of mekl can be traced, giving their motion, velocities, etc. 

nie engine thus moving forward penetrates the lower bulkhead of 

the S-IVB Ix)x tank then the upper me which is canmrm with the LH 

in the s-MB. 
2 

Failure of the IOX (Mole or Shattering): 

The iaapect of the thrust cone and engine assembly upon the 

113x tank 1-r and upper bulkheads causes penetration of the thin 

-tal walls. lple mininum effect will be penetration by the thrust cam 

and engine, which will becaag mangled in the process. The wuchum 

effect will be the shattering of the bulkheads. Both opinions have 

been advancsd with, hawwar, no experimental support of ho# the ma- 

terial of the s-IVB stage will react to such severe impact conditions. 

The amount of mixing of Ix)x and LHz will depend on the size of 

the hole med and the subsequent amocmt of motor penetration into 

the WZ tank. Again experimental determination of the material behavior 

could narrart the range of results predicted. 

sBco3idary Mixing in the s-IVB stage: 

i k p x i i n g  upon the size of the primiary explosion and the 

the at vhich it occurs, partial oz cqlete penetration of the thrust 

com and wine into the I€Iz tank of the S-IVB can be expected. This 

phanawer#rm, producing violent mixing, is referred to in our mrk as 

the EXPLOSIVE MIXING MODE. This mixing mode produced by an explosion, 

rsmming the propellants and oxidizers together with atrsme velocities 



and violance, was simulated in  our modeling studies and showed that b 

to the eottraws mix- rates very high explosive yields CUL be expected. 

None of the other experimsnts with liquid e t  propellants such 

as the ADL experiments, Project FWlO, and the work of Mr. Fletcher 

coverad ExPmsIvE MIXING lmms and therefore cannot bo used to make 

predictions a b u t  the explosive yields obtainable from such a d e  

of failure. Our wrk of simulation through d e l  studies covered this 

d e  as well as the others and indicated the nuch higher explosive yields 

obtahmhle. 

Bven though the other works cited above did not cower the EXPIX)- 

SIVE NIXING IQE, they indicated that the higher the energy supplied 

for the bring- together of the propellants such as dropping, firing 

into concrete walls, etc. , the higher the yield obtainable. The 

IIXPIXISIWE MIXIN MXE is one of the extreme cases of energy supply far 

the mixing process 

Figure 133 presents the mlx'ng function for the secondary ex- 

plosim prorhrced by a one tenth of one pexesrt primmy explosion. 

1atiOn of s w  Mix and Resulting sxp losive Yield: 

previous work ~ R S  shown that the maXing energy affects the 

delay time before Qnitian less than the amaunt of he1 arrd oxidizer 

mixed. Thus, the greater the amount of energy supplied, the more 

mixing which will be accompllishd bfom ignition occurs, and thus, 

the higher the explosive yield obtained. 

In the ElPIDSIVE MIXING MXE the size of the primary explosion, 

value where maximus secondary mixing can be obtained, is up to  
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ialportont. If t i l e i  prislary ~ l o s i o p n  is larger than this value it 

amsums part of the u1D( which otherwise would be available for the 

secdary explosion, result- in a dgcreesg in the total yield. 

Figure 136 presents the theoretical rmurimm explosive yield of 

tb secamhy explosion based upon the primry explosive yield. It 

can be seen that for very low primary explosiwe yields the secondary 

yields produced are also low. With a yield increase of the primary 

explosion the secondary msutdnamr yield increases arid then decreases 

againdeptmhg upon the delay time involved before the primary a- 

plosion. Finally, i f  the primary yield is rather large the seamdary 

explosion is smaller sime not much oxidizer was l e f t  for this reaction. 

Figure 135 presents the experimentally predicted prlsrary yield 

as a fimction of ignition time after destruct initiation. This f iwre  

also presents the seoondary explosive yield resulting fran an srppraxi- 

mate 0.1% prh!Uy axplosion. 

Had the primary explosive yield hcreasd (in the modelhg studies) 

the resulting secondary explosion yield curve W d  have been shifted 

with the aaexisuas value moving up and to the left .  

Results of the above antalysis and pkmanem following a destruct 

initiation, which can produce the S-II/S-m interaction, are SMmarized 

in Figure 136. I t  presents theoretical p- and seeandary -10- 

sive yields and axperhtal  primary yield predictions. I t  also pre- 

sents experjniental secmdary explosivs yield prcsdictians based upon an 

approximate 0.18 priumry explosive yield. A higher pr- explosive 

yield shifts the secaDIclary explosive yield curve up and to the l e f t ,  
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There may be some desire to  establish the exact of 

the events described above. I t  does not seem tm mportant t o  estak- 

lish this. Theoretial studies and the modeling, both two and three 

dimensional, sWat jng  the primary explosions, show that thesc events 

will happen. The initiation of the destruct system may well be necessary, 

causing a sequence of events such as described above. The re-prted 

explosion on the pad of the Russian 10-14 million pound thrust super 

rocket during the SLnmner of 1969 is a case In point. 

In the case a t  hand the problem of the S-II/S-IVB interstage 

failure is self psed through the design of the destruct system. The 

above problem can be eliminated by removing the ring charge f m  the 

S-NB Ixlx tank resulting in a simpler, better, and safer S a t i  V 

destruct system. 

Recamended Action f s  Preventing the S-IVB/S-I1 Interstage Faillme 

The detailed analysis of the destruct system reported else- 

where, is believed t o  be able to  function more or less as intended 

except for the S-II/S-IVB interstage failure. 

The sequence of events as analyzed and discussed in this papr  are 

triggered by the setting off of the destruct charge on the S-IVB LQX 

tank. For this reason it seems that, from a technical point of view, 

the removal of the ring charge would prevent the occurrence of this 

sequcu\ce of events. 

Everyone w i t h  whom this problem was discussed, a t  Huntsville and 

Cape Kennedy, agrees that we would have a better destruct system with 
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that charge removed. 

I f ,  hawever, positive destruct of the IM( tank is required, p- 

cake charges could possibly be used t o  accauplish this w i h t  let*- ng 

the S-IVB and S-I1 interact as disarssec?. 

Conclusions 

It is believed that upon the foregoing work the following 

conclusions can be made: 

1. The methods Frevicmly developed by Dr. Fmber's g m q  regarding 

liquid rocket propellant explosions seemed well-suited for the 

detailed =lysis of the Saturn V des t rx t  system. 

2. .t considerable amount of uncertainty still exists regarding the 

actual effect of the destruct system upon the Saturn V tankage 

configuration. Our rec-Ation of several years a w  concerning 

aperirnental verification of the various opinions is still valid. 

3. An S-IVB/S-I1 interaction caused by the initiation of the destruct 

system can hppen, and i n  our opinion, based upon theoretical 

and experimental modeling studies, is likely to happen. 

4. This S-IVB/S-II interaction can produce a primary explosion of the 

size predicted by other works, and i n  turn a mch lzrger secondary 

explosion produced by the explosive mixing d e  not previously 

investigated. 

5. The seqdence of events described in  this paper can be prevented by 

removing the ring charge on the S-IVB Lox tank, preventkig the 

Occurrence of a high yield explosion in t h i s  manner. 
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6. If positive destruct of the S-IVB LOX tank is required this can 

possibly be h e  by using pancake charges, thus preventing the 

above sequence of ewents which lead to  a high seccmdary yield 

explosion. 

S-IVB Pancake charg e Destruct Analysis 

Becase of the possibl: difficulties w i t h  the destruct 

system 8s it was designed and intended to be used, open- a hole in  

the bottan of the '.02 tank of the third stage, which in turn can 

prochace a primary explosion leading to a larger seadary explosion 

in  a critical region, alternative destruct methods were investigated. 

This seemed to  be necessary i f  positive destruct of the tanks 

was to remain a definite requirement, 

For this reason the possibility of rupturing the tmks of the 

thiid stage, especially the LO, tank, was studied, This tank c'3es not 

hate actual contact 

open like the other 

L. 

with the outside skin md thus cannot be ripped 

tanks for propellant dispersal. This could be 

done by the proper design and placenent of pancake charges. 

The pancake clzarges were simulated in  both two and three dimen- 

sional models, see Figures 137, 138, by several methods. 

1. Pressurized air ,  blowing one propellant into the other. 

2. An air zifle which produces a blast opening the tanks and 
allowing the cqxments t o  mix. 

3. A 22 caliber blank which acts similarly to  the air gun hut 
has a sharper and mre powerful blast. 
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4. The pressurization of the tanks so when the ope*- 
made m l y  one liquid is propelled into the other by the 
pressure in the tank. 

pressurized, lmpmssurited and vented systems m e =  analyzed 

andcanpzpred. 

5. 

Again depding upon the design of the charge different results 

can be obtained. If the shaped pamake charge is to basically blow 

a hole into the walls of both the I.&$ tank and the LOz tank and both 

of them are pressurized, relatively little mixing is producad and with 

the liquids streamoing cut of rhe hole an external 3 firernay be 

-0 

If,  however, the shaped charge blows o m  cmstituent into the other 

backedby the pressure in the tank, thenconsiderablemixing can occur. 

It might be obsenred that the size of the pancake charge in the 

modeling was relatively larger than OJOuld be used in the amparable 

prototype since true scaling d d  not have produced much effect on 

the models. The models used here were again US0 W e .  

The actual explosive yield even far t h e  sst case i s  only a 

small fiaction of the nwcinum of the total theoretical maximn for the 

Saturn v. 
The position, however, may be critical and it may be better to 

produce a small explosion, or not to destruct the tank at al l ,  if 

this is admissible for actual operation. 

Figure 139 presents the progression of the mixing process by show- 

ing a nmdm of frames of the high-speed movie film. 
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h Wl&,-Sb Of the l F C O r d S ,  f T W ,  results h a 

function and expected yield as shown in Figure 140, and it can be 

seen that by this method of failure the mixing and thus the explosive 

yield will always be a small fraction of the theoretical possible for 

the Saturn V. Thus in the over-all picture the pancake charge destruct 

does a nice job in producing low yield but the location near the pay- 

load, nuclear packages, or the personnel capsule may be cause for 

sane concern. 

(In the last Figure, 141, in t h i s  secticm several typical yield 

hrnctions are presented mostly to indicate the various possibilities 

of modeling. 

The fastest rising &e is the result of a glass model which was 

partly shattered by a 22 caliber blank which was used to simulate the 

F a k e  charge. Because  of the shattering and the large contact area 

the mixing progressed rather rapidly in this case. 

The next curve over is essentially the same experiment repeated 

ht with a plastic model which had a predrilled 'hole which was covered 

by tape and the tape was blown in w i t h  a 22 blank. Because of the 

smaller hole and therefore less contact surface the m i x i n g  progressed 

more slowly. 

The next curve presented gives the results when a plug is removed 

in the plastic model t o  open up the holes which otherwise would be 

produced by the pancake charge. Since the action is much less Violent, 

the mixing which occurs is much slower. 

When an air gun is used instead of the 22 blank or the plug, the 
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tape over the hole absorbed much of the energy and the &ing is 

still slower. It does not seem as good a simulation t o  the pancake 

charge effect. 

The last cunre presented is that of the LO2 tank pressurized and 

not vented or opened up by the pancake charge. This makes it difficult 

t o  have the simulated % to flow into the ID2 tank except for an ini- 

tial surge and the mixing never reached the completion it did in the 

other simllatians. 

In all cases the mixing and thus the resulting explosive yield 

was a snall fraction of the total potential of the Saturn V. 

Since this type of destruct systen was not seriously considered, 

the wrk was not d e d  aut as completely as in  the others. I t  is 

of interest, however, since the type of failure and the subsequent 

mixing phenomena are different. 

t 
This work is presented late in the report since it represents an 
application of the theories and methods developed under this 
contract. I t  was actually carried out in 1968. 



Part rv Space Shttle Analyses (Early Configuratiansl 

Introduction 

Since methods had been developed earlier that proved to be 

reliable for predicting the explosive yield, it was decided to apply 

the same procedure of analysis to the various configurations of the 

Space Shuttle and its most probable modes of failure. This infomation 

then became available parallel to the development of the shuttle rather 

than after the designs and configurations had become hardened, as proved 

to be the case with the Saturn V. 

It is much easier to use infonnation,if available,for guidance and 

decision making than to use that same infomation for making changes 

later. 

The early configurations =re of the all liquid type with a booster 

axxl two different types of orbiters, the Delta W i n g  Orbiter and the 

200 Mile Orbiter. 

Again, 50th scale models were constructad from wire frames and 

plastic to simulate the tankage configurations and then they were mounted 

on the pad and in flight configurations so that with high speed pho- 

tography various modes of failure can be studies. See Figs. 142-145. 

With these models available the following modes of failui, ere 

studied and the mixing functions obtained: 





348 

. 

. e 

Figure 143 Space Shuttle Delta Wing Orbiter 

. Bulkhead Type Failure 

0 

. 

REPRODUCIBILITY OF THE ORIGiNAL PAGE IS' POOR. 



, .  

348 I )  ”- 

, 
I 
i , 

s 

11 
j 

; 

a** ., 
. i  . 

I r - ,  

I 

. .  , . * .  

I 
, , 

i 
! 

. .. . - .~.-- . - . . ..-.-*.. 

‘ Figure 143 Space Shuttle Delta W i n g  Orbiter 

. WilXrheed’QpFailure 

1, 

* 







351 

Delta W i n g  Orbiter 

2 0  K e  Orbiter 

if?erent umde!s o 
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fly into the gram3 at different angles. A dashpot caarstnsted frwa a 

55 gallon oil dnan made it possible 

times realistic far the modeling of actual crashes and crash landings. 

stop the models in distances and 

Again, High-speed photopphy Blgs used in recombg the events, 

and the analysis of the mixing frcnae by frame produced the results for 

these different cOIlfigl,xrations and modes of failure. 

Since ..he actual configuraticm of the Space Shzttle naw has taken 

on a Solid-Liquid cambination, the -ling results discussed here 

have value mostly in 

can be applied to almst any real systen once the amfigurations are 

known and the most likelv IQxles of failure selected. 

haw the raodelw and analyses procedures 

A. Bulkhe& 'I)rpe Failures 

T h e s e  types of failures are pmbably the mst likely 

cmes and are imrestigated in this section. 

BGoster 

OJI Pad Failure - He or RP Tank Explosion Rupturing 

Main Lo, and Tanks: 
" L 

The booster model was in vertical or 1- position and holes 

were precut into the tanks and then covered by duct tape. 

A t  time zero the duct tape was ripped of remotely 8nd the shulated 

liquid propellants were a l l d  to mix while high speed caneras recorded 

the processes. 

Tn deciding upon the damage done to the propellant tanks and the 

hole sizes, it olats assmed that the He tank explosion progresszs 
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spherically artplavd d the intersection of it with the tanks produes 

holes in the 'lrespBcti\re tanks allowing the fuel asd oxidizer to flow 

aut a d  lifix. 

¶%e €ixiae by frame analysis, translated into pmtotype tine as 

explained and emcuted earlier, gives the mixing function for the 

Space M e  Booster of this digurat im.  

Five different failure modes are presented here with their re- 

spective results: 

1. He Tank Explosion, 3aall cam=epltrrc - Holes: 

A He tank explosion cuts holes into the ID2 and the It(z 
tanks <Me COnCeSltriCally abave the Other  d both Of than 2.6 inches 

in d h ~ t e t e ~ .  I t  was assumed that the He tank explosion produces a 

spherical shock olbave which arts the holes into the main pmpellant tanks. 

The M2 exiting fma the top hole falls into the hole in the Ll$ 

tank and mixing progresses. Translated into prototype time the mixing 

fuuction i s  obtained for this case and ti& mode of failure. Fig. 146 

2. He Tank Explosion, Small Off-Set Holes: 

This case is similar to the first discussed above cxcept 

thar the tw holes in the main tanks are off-set by one radius. 

When the LO2 strwan falls into the hole in the W2 tank off center, 

i ilaws same of the JH2 to splash aut, giving mofe roam ov : n ullage 

space for the LO2 to enter. More mixing is obtained than was possible 

in the first case. Again w i t h  the saute frame by frme analyAs the 
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mixing function is obtained as presented in Fig. 147 

3. He Tank Explosim, Large Holes 

Case 3 is similar to case 1 except that it is assumed 

that the explosion of the He tank is more pcmrful and produces con- 

siderably larger holes in the main propellant tanks than OJlere pI-oducd 

befbe. 

TJae simulated hole size in this case was 4.5 inches in diameter. 

Rhile in the first tPJ0 cases most of themixing occurs inside the 

tanks, in this case a cans:'.derable portion of the total mixing occurs 

external to the tanks where the two liquids from both the LO2 and H2 

tanks caue together. 

The results fmm this mode of failure and configuration are shown 

i n F i g .  148 

4. Kidneysharped J P TankBcphsion (No skin) 

The next case analyzedwas that of the kidney shapgd J P 

tank exploding and again cutting holes into the main propellant temks 

of the Booster. 

For this pzu%imlar case it was asslrmed that the skin of the Booster 

was damaged or reamed allowing the propellants to €low to the ground. 

The propellants were mixing as the streams were flowing tokether before 

they hit  the ground and further mixing occurred after impact and pddling 

on the ground. 

Again d i n g  the frame by frsme analysis mi determining the m i x i n g  
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inthe impacting streams andthenmthe groundr the mixing fimction 

for the prototype Space Shuttle Booster is obtained. Fig. 149 

5. Kidney shtlped J P Tank Explosion (With Skin) 

The last case simulated and discussed here on the Space 

Shuttle Booster is similar to case 4 except that the assmptim was 

made that the skin of the Booster was left intact by the explosion and 

the LOt and are confined by the vehicle. 

Jhe to confinement and less chance for the propellants to spread 

out and disperse, the mixing produced is considerably higher and the 

mixing fimction again for the prototype is shown in  Fig. 150 

Delta Wing Orbiter 

Two cases are taken up here. They are both on-pad failures due 

to He tank explosions. 

holes into the main propellant tanks allowing the fuel and oxidizer to 

mix. In tne seanil case the He tank explosion produces a seam failure 

which opens a ma larger hole and therefore the mixing is much greater. 

In the f i r s t  case the He tank explosion blows 

The results from the analysis are again presented after frame by 

frane ana; :.is and prototype time correlation. 

Case I Holes produced in  the tanks Live the results shown in  

Fig. 151 . 
Case 2. A seam failure gives the results shown in Fig. 152 
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200 Mile Orbiter 

The case analyzed for the 200 mile orbiter is a He tank explosion 

which opens holes in both the LO2 and the LHz tanks w i t h  subsequent 

mixing. 

Again this failure occurs on the pad with the orbiter is: vertical 

posit ion. 

With the mixing occurring both inside and external to the tanks, 

rather high values are obtained a t  the end of t. 

Naturally, as was pojnted art earlier, the "critical mass" will be 

reached quickly, not l e t t w  the mixing proces5 vog:ess very far, re- 

mMng in  a low explosive yield. The mixiag funtion, however, since 

not terminated in  the modeling, can proceed undisturbed right to  the end. 

.Ling process. 

The results fram this analysis are shown in  Fig. 153 

B. TogplhgonthePad 

In this sectian cases are taken t? which may occur i f  the 

booster or the orbiter or the canbined Space Shuttle configirotion 

should topple over on the pad. 

Again, these modes of failure have been considered a!mqg the more 

l ikely ones and for this reason they have been modeled. 

B0oo:er 

The toppling of the boos. 
--- 

alone has been divided into two cases, 

one where, due to the toppling, the s e m  fa i l  i n  + h ~  'an. ~ ?.d t.he tank. 

spli t  open, ard two where the tnilkheads fa i l  or th.= c & t.: ,tks 

casne 9pen. 
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1. Seanr Failure 

In this siaailatim the booster us allawed to t i p  over 

d m  at the same the the seams were opened by r ip  tape procedure. A l l  

this was dam on a crosshatched platform so that the high speed records 

of th- ~hemmena d d  be analyzed accurately and carefully. 

The results frcrm this series of experiments are shmm in  Fig. 154 

2. TankBulkheadEndFailure 

The second case essentially the same as the first but 

w i t h  different damage resulting tc, the tanks, namely the heads ere 

a l l d  ta ame off the tanks. 

This failure a l l e  the liquids to splash forward and a certain 

amount of mixing ocamred. 

tailed film analysis. 

Fig. 1SS gives the results frcau the de- 

Delta W i n g  Orbiter 

The Delta W i n g  Orbiter in this series of experiments was allowed 

t o  topple over and a t  the same time the seams were split open sinulated 

by rip-tapes. 

The resulting splash patterns as recorded by high speed photography 

were analyzed and resulted in the mixing function presented in  Fig. 156 

200 Mile Orbiter 

The experiments carried aut with the 200 mile crbiter were iden- 

tical to  those of the de l ta  wing orbiter, but due to the different 

internal configuration of the tanlmge, the mixing patterns and the 
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resulting mixing function look..3 different. Fig. 157. 

Booster and Delta W i n g  Orbiter 

In these series of experiments the cambination of the booster 

and the delta wing orbiter were allowed to topple mer on the pad 

and while they fell the tanks =re opened with rip-tapes simlating 

:he failure of the tankage. The booster and orbiter separated upon 

impact, leaving an ever increasing splash and mixing area which was 

faithfully recorded by high speed photography and later analyzed frame 

by frane to obtain the mixing function. Fig. 158. 

Booster and 200 Mile Orbiter 

These experiments were carried out very much like the ones for 

the booster and delta wing orbiter and the results were obtained in 

exactly the same inarmr. 

Again the mixing function is obEained which represents the results 

of this mode of failure and this combined configuration. Fig. 159. 

C. Crash Landing 

In t h i s ,  the last, series of experiments on Space 

Shuttle Configurations under consideration at the time, the experiments 

carried our included dynamic systems. 

crash landings of the booster, and each of the orbiters, separately. 

Investigated were primarily the 

To simiilate these conditions, a physical system was set up to 

allow the booster or orbiters t o  be suspended by thin chains. In this 
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manner the models could swing from various heights simulating different 

landing velocities and could allow, by varying the length of the chains, 

different landing or crash angles. 

To prevent bouncing of the models and to stop therm, simulating 

the actual cases, a large dashpot made fmn a 55 gallon dnnn was at- 

tached to the models. This stopped them at different and prede:ennined 

rates of deceleration. Rip-tapes were also attached to the models and 

they were automatically removed as the model simulated the cmsk landing. 

Again, the complete pmcedulres and series of events were documented 

on high-speed films which were later used for analysis and the deter- 

mination of the mixing functions. 

More trials were needed for this procedure, until the right velocity 

simulation and dash-pot deceleration values were obtained. After this 

method was perfected the results obtained were reproducible. 

Booster 

The booster model with rip-tapes and the braking or dash pot 

system attached was filled with the simulated propc?llants. Then the 

model was allowed to swing d m  from a predetermined height and to 

impact at a shallow angle upon the landing surface. 

As it landed, the rip tapes were pulled, opening the tankage, d 

the braking system stopped the forward motion rather sharply. 

The resulting @ash patterns were recorded with high-speed pho- 

tography and then analyzed frame by frame by tracing and then planime- 

ter- the various areas, (total, splash, and mixing), 

F m  the analysis the following results are obtained. Fig. 160 
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Delta Wing Orbiter 

The crash landing simulation was repeated for the delta wing 

orbiter, and except for the configuration and the braking system and 

rip-tape attachment, the experiments were carried out the same as for 

the booster. 

The analysis of the high-speed photographic records again allowed 

the determination of the mixing functian for this type of experimental 

s M a t  ion. 
' The results are shown in Fig. 161. 

200 Mile Orbiter 

The last in the series of experiments of the early Space Shuttle 

Configurations was the crash landings of the 200 mile orbiter. 

The experiments were carried out in the same manner as those with 

the booster and the delta wing orbiter. The 200 mile orbiter after 

being filled with sh la ted  fuel and oxidizer was allowed to swing 

&wn and crash land OR the simlated landing platform. The resulting 

splash patterns, again recorded w i t h  high-speed photography, were then 

analyzed giving the results reported in Fig. 162. 
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F i n a l  Closure 

The foregoing disarssicms and presentation of results cover 

a large amount of both theoretical and experimental work. 

A mnnber of new concepts are presented, and verified experhentally, 

to give several new approaches for the evaluation of liquid rocket 

propellant phencamsm, and to allow their analyses w i t h  regard t o  mixing 

characteristics, basic behavior and explosive yield pdictions. 

Far the first time, data were t a b  inside exploding missiles, 

masming mixing characteristics, location of ignition poin+t, shock 

front and reaction front behavior and velocities, etc. 

Three methods for determining explosive yield were develuped and 

verified in the laboratory and field and then used for analyses and 

prediction. They are the 

1. Nathemtical Model 

2.  Seven Chart Approach 

3. Critical lclass Analysis 

These methods, although quite different in approach and independent 

frm each other, give the same results when used for analysis of a 

particular problem. 

It is believed that this work as presenred here is a valuable 

contribution to Space Technology, and L i q u i d  Fuel Technology in general, 

axxi a significant step in making Space travel and Industrial processes 
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